Loading...
Search for: pressure-effects
0.012 seconds
Total 121 records

    Dynamics of electrostatic interaction and electrodiffusion in a charged thin film with nanoscale physicochemical heterogeneity: Implications for low-salinity waterflooding

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 650 , 2022 ; 09277757 (ISSN) Pourakaberian, A ; Mahani, H ; Niasar, V ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The slow kinetics of wettability alteration toward a more water-wetting state by low-salinity waterflooding (LSWF) in oil-brine-rock (OBR) systems is conjectured to be pertinent to the electrokinetic phenomena in the thin brine film. We hypothesize that the nanoscale physicochemical heterogeneities such as surface roughness and surface charge heterogeneity at the rock/brine interface control further the dynamics of electrodiffusion and electrostatic disjoining pressure (Πel), thus the time-scale and the magnitude of the low salinity effect (LSE). In this regard, film-scale computational fluid dynamics (CFD) simulations were performed. The coupled Poisson-Nernst-Planck (PNP) equations were... 

    The impact of the electrical behavior of oil-brine-rock interfaces on the ionic transport rate in a thin film, hydrodynamic pressure, and low salinity waterflooding effect

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 620 , 2021 ; 09277757 (ISSN) Pourakaberian, A ; Mahani, H ; Niasar, V ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Wettability alteration is the principal low-salinity-effect (LSE) in many oil-brine-rock (OBR) systems. Our recent experimental results have demonstrated that wettability alteration by low salinity is slow. It is expected that the electrical behavior of oil/brine and rock/brine interfaces and the water film geometry control both the transient hydrodynamic pressure, and the time-scale of ionic transport in the film, thus the kinetics and degree of wettability alteration. In this paper, the electro-diffusion process induced by the imposed ionic strength gradient is simulated by solving Poisson-Nernst-Planck equations in a water film bound between two charged surfaces, using a finite... 

    Pressure induced structural, electronic, optical and thermal properties of CsYbBr3, a theoretical investigation

    , Article Journal of Materials Research and Technology ; Volume 10 , 2021 , Pages 687-696 ; 22387854 (ISSN) Saeed, M ; Ali, M. A ; Murad, S ; Ullah, R ; Alshahrani, T ; Laref, A ; Murtaza, G ; Sharif University of Technology
    Elsevier Editora Ltda  2021
    Abstract
    This article presents the variation of structural, electronic, thermal and optical properties of a halide perovskite CsYbBr3with increasing pressure, employing density functional theory. The pressure effect was determined in range of 0-15 GPa. In which stability of CsYbBr3remains valid, as, verified from negative values of enthalpy of formation and phonon dispersion curves. A significant change was observed in lattice constant, bond lengths, bulk modulus and its pressure derivative, volume and ground state energy, with increasing pressure. The calculated electronic properties presented CsYbBr3as a semiconductor with direct band gap of 3.61 eV. However, pressure rise shift the Yb-d states... 

    Utilization of gene expression programming for modeling of mechanical performance of titanium/carbonated hydroxyapatite nanobiocomposites: The combination of artificial intelligence and material science

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 34, Issue 4 , 2021 , Pages 948-955 ; 17281431 (ISSN) Shojaei, M. R ; Khayati, G. R ; Hasani, A ; Sharif University of Technology
    Materials and Energy Research Center  2021
    Abstract
    Titanium carbonated hydroxyapatite (Ti/CHA) nanobiocomposites have extensive biological applications due to the excellent biocompatibility and similar characteristics to the human bone. Ti/CHA nanobiocomposite has good biological properties but it suffer from diverse characteristics especially in hardness, Young's modulus, apparent porosity and relative density. This investigation is an attempt to propose the predictive models using gene expression programming (GEP) to estimate these characteristics. In this regards, GEP is used to model and compare the effect of practical variables including pressure, Ti/CHA contents and sintering temperature on their monitored properties. To achieve this... 

    Fabrication of a highly efficient new nanocomposite polymer gel for controlling the excess water production in petroleum reservoirs and increasing the performance of enhanced oil recovery processes

    , Article Chinese Journal of Chemical Engineering ; Volume 32 , 2021 , Pages 385-392 ; 10049541 (ISSN) Asadizadeh, S ; Ayatollahi, S ; ZareNezhad, B ; Sharif University of Technology
    Materials China  2021
    Abstract
    A new nanocomposite polymer gel is synthesized for reduction of excess water production in petroleum reservoirs at real operating conditions. This new nanocomposite gel contains SiO2 nanoparticles, partially hydrolyzed polyacrylamide (HPAM) and chromium triacetate. High pressure and high temperature tests using porous carbonate core are carried out to evaluate the effects of nanoparticles on the synthesized polymer gel performance. It is shown that the residual resistance factor ratio of water to oil using the synthesized polymer gel nanocomposite in this work is much higher than that of the ordinary polymer gels. The presented results confirm the high performance of the synthesized... 

    Supersonic separator's dehumidification performance with specific structure: Experimental and numerical investigation

    , Article Applied Thermal Engineering ; Volume 179 , October , 2020 Majidi, D ; Farhadi, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Supersonic separators are used in gas separation processes such as dehumidification of humid air due to high performance and its good pressure recovery. In the present study, a comprehensive numerical and experimental investigation on the hydrodynamic behavior of air as working fluid and dehumidification performance of supersonic separator have been accomplished. The effect of the operational parameters on shockwave's position are examined. The outcomes show that by increasing the pressure level of supersonic separator, relative error between numerical and experimental results decreases from 20% to less than 10%. The effect of the operational parameters and humidity of inlet air on the... 

    Possible pitfalls in pressure transient analysis: Effect of adjacent wells

    , Article Journal of Petroleum Exploration and Production Technology ; Volume 9, Issue 4 , 2019 , Pages 3023-3038 ; 21900558 (ISSN) Mirzaalian Dastjerdi, A ; Eyvazi Farab, A ; Sharifi, M ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Abstract: Well testing is one of the important methods to provide information about the reservoir heterogeneity and boundary limits by analyzing reservoir dynamic responses. Despite the significance of well testing data, misinterpreted data can lead us to a wrong reservoir performance prediction. In this study, we focus on cases ignoring the adjacent well’s production history, which may lead to misinterpretation. The analysis was conducted on both homogeneous and naturally fractured reservoirs in infinite-acting and finite-acting conditions. The model includes two wells: one is “tested well” and the other is “adjacent one.” By studying different scenarios and focusing on derivative plots, it... 

    Mechanical and chemical pressure effects on the AeFe 2 As 2 (Ae = Ba, Sr, Ca) compounds: Density functional theory

    , Article Computational Materials Science ; Volume 160 , 2019 , Pages 233-244 ; 09270256 (ISSN) Aghajani, M ; Hadipour, H ; Akhavan, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    We have studied the pressure-induced structural, magnetic and electronic properties of AeFe 2 As 2 (Ae = Ba, Sr, Ca) compounds in the framework of density functional theory within the GGA-PBE method. The effects of chemical pressure generated by Sr and Ca substitutions in BaFe 2 As 2 have been investigated. We have found a magnetic transition at the same primitive unit cell volume, around 81 Å 3 for the (Ba⧹Ca)Fe 2 As 2 compounds, which predicts a magnetic transition pressure of 12 GPa for SrFe 2 As 2 . The structural parameters of FeAs 4 tetrahedra are obtained after ionic relaxation and compared with the existing experimental results. The change of these internal parameters is ascribed to... 

    Effect of CO2 and crude oil type on the dynamic interfacial tension of crude oil/carbonated water at different operational conditions

    , Article Journal of Petroleum Science and Engineering ; Volume 170 , 2018 , Pages 576-581 ; 09204105 (ISSN) Lashkarbolooki, M ; Riazi, M ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Concerns about climate change have persuaded the researchers to examine CO2 injection in the form of carbonated water (CW) into oil reservoir as a safe and effective CO2 storage and enhanced oil recovery process. Although interfacial tension (IFT) between crude oil and injected fluid has a vital role on the displacement of fluids in porous media, the effect of CO2 and crude oil type on the dynamic IFT of crude oil under different operational conditions is not well understood. Accordingly, this study was carried out to assess the effects of temperature, pressure, crude oil type and CO2 on the dynamic IFT of crude oil/CW. To achieve this goal, two types of crude oil were provided from southern... 

    Evaluation of effect of temperature and pressure on the dynamic interfacial tension of crude oil/aqueous solutions containing chloride anion through experimental and modelling approaches

    , Article Canadian Journal of Chemical Engineering ; Volume 96, Issue 6 , 2018 , Pages 1396-1402 ; 00084034 (ISSN) Lashkarbolooki, M ; Ayatollahi, S ; Sharif University of Technology
    Wiley-Liss Inc  2018
    Abstract
    The interfacial properties of crude oil are highly complex and are not yet well understood. This study aimed to evaluate the effect of temperature (30–80 °C) and pressure (3.44–27.58 MPa) on the dynamic interfacial tension (IFT) of crude oil/aqueous solutions consisting of 15 000 ppm of salt containing different chloride anions, e.g. NaCl, KCl, MgCl2, and CaCl2. To reach this goal, several parameters, such as dynamic and equilibrium IFT, adsorption time, diffusivity of resin, and asphaltene as surface-active agents from bulk of crude oil towards fluid/fluid interface and surface excess concentration of them at the interface, were compared as a function of temperature, pressure, and ion type.... 

    Pressure dependence of effective Coulomb interaction parameters in BaFe2As2 by first-principle calculation

    , Article Physica C: Superconductivity and its Applications ; Volume 548 , 15 May , 2018 , Pages 61-64 ; 09214534 (ISSN) Aghajani, M ; Hadipour, H ; Akhavan, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Pressure dependence of the onsite Coulomb interactions of the BaFe2As2 has been studied by employing the constrained random phase approximation within first-principle calculations. Analyzing total and projected density of states, a pseudogap is found for dxy band at the energy roughly 0.25 eV higher than the Fermi level. Also, by applying pressure the spectral weight of the dxy orbital vanishes while other orbitals remain metallic. The different screening channels, as discussed in four different models, affect significantly on the Hubbard U while the Hund J remains almost unchanged. The average onsite bare and partially and fully screened Coulomb interactions increase with different rates... 

    Pressure effect on the mechanical and electronic properties of B3N3: a first-principle study

    , Article Physica C: Superconductivity and its Applications ; Volume 548 , 15 May , 2018 , Pages 50-54 ; 09214534 (ISSN) Bagheri, M ; Faez, R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this paper, we perform Self-Consistent Field (SCF) energy calculation of Tetragonal B3N3 in the homogenous pressure range of −30 GPa to +160 GPa. Also, we study mechanical and electronic properties of this compound as a potential candidate for a conventional phonon-mediated superconductor with a high transition temperature. To do this, the volume changes of B3N3, and its bulk modulus, due to applying pressure in the range of −30 GPa to +160 GPa are calculated and analyzed. The calculated Bulk modulus of B3N3 at 230 GPa in the relaxed condition indicates the strength of bonds and its low compressibility. We calculated and analyzed the electronic effective mass in both XM and MA directions... 

    A design procedure for the assessment of carbon capturing and utilization of flue gas from power plant using experimental data

    , Article Chemical Engineering Research and Design ; Volume 131 , 2018 , Pages 393-405 ; 02638762 (ISSN) Rostami Dehjalali, F ; Avami, A ; Sharif University of Technology
    Institution of Chemical Engineers  2018
    Abstract
    The high dependence of the atmospheric carbon dioxide emissions on fossil fuels has led it to increment. Process design along with the economic aspects, improves the technology diffusion of the carbon capturing. In the pressure swing adsorption as a promising carbon capturing technology, increasing the pressure leads to more adsorbed amount of carbon dioxide and energy consumption of compressor, which is a source for carbon dioxide emission. Experimental data shows that for pressures between 3 to 5 bar, the avoided CO2 is in maximum rate. The economic analysis reveals that the pressure of 3 bar is appropriate. Also, the utilization of CO2 in the aerogel production, as a nano-based thermal... 

    An investigation into the effect of pressure source parameters and water depth on the wake wash wave generated by moving pressure source

    , Article Scientia Iranica ; Volume 25, Issue 4 , 2018 , Pages 2162-2174 ; 10263098 (ISSN) Javanmardi, M ; Binns, J ; Thomas, G ; Renilson, M ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    In this study, the effect of moving pressure source and channel parameters on the generated waves in a channel was numerically investigated; draught, angle of attack, and profile shape as parameters of pressure source, and water depth and blockage factor as channel parameters for wave height. Firstly, the chosen Computational Fluid Dynamics (CFD) approach was validated with the experimental data over a range of speeds. Then, the CFD study was conducted for further investigations. It was shown that that by enlarging draught, angle of attack, and beam of the pressure source, the wave height generated would be increased. Channel study showed that it was possible to increase the wave height... 

    Molecular and continuum simulation of binary gas mixture flow through curved miconozzles

    , Article 12th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 2018, 25 June 2018 through 29 June 2018 ; 2018 ; 9781624105524 (ISBN) Darbandi, M ; Sabouri, M ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2018
    Abstract
    In this study, multi-component CFD and DSMC solvers are used to study the gas mixture flow through a separation micronozzle at different pressure ratios. The resulting velocity and mole fraction fields, which are predicted by these solvers, are compared with each other to examine the effects of flow rarefaction on the mixture flow and the species separation and to evaluate the validity of continuum flow theory provided by the CFD solver. The results indicate good agreement of the velocity and mole fraction fields in the regions in which the pressure is sufficiently high. A decrease in pressure value, which is the result of increasing the pressure ratio at a constant inlet pressure, and a... 

    Effects of fluorine doping and pressure on the electronic structure of lao1−x fx feas superconductor: a first principle study

    , Article Journal of Superconductivity and Novel Magnetism ; Volume 30, Issue 8 , 2017 , Pages 2065-2071 ; 15571939 (ISSN) Ebrahimi, M. R ; Khosroabadi, H ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    The effects of fluorine doping on the electronic structure of LaO1−xFxFeAs superconductor have been investigated by ab initio density functional theory using pseudopotential quantum espresso code. Firstly, we have studied the role of fluorine doping on the electronic structure of LaO1−xFxFeAs by calculation of band structure, density of states, and Fermi surfaces at various doping levels x = 0.00, 0.25, and 0.50. The lattice parameters and ionic position have been determined by optimizing crystal structure. Our results show that doping decreases cell volume similar to mechanical pressure and shifts the bands and states near the Fermi level toward the lower energies. According to the Fermi... 

    Interpretation of in situ horizontal stress from self-boring pressuremeter tests in sands via cavity pressure less than limit pressure: a numerical study

    , Article Environmental Earth Sciences ; Volume 76, Issue 9 , 2017 ; 18666280 (ISSN) Ahmadi, M. M ; Keshmiri, E ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    The paper presents a numerical finite difference model of self-boring pressuremeter test (SBPM) using FLAC software. Different cavity expansion theories in sand have been compared to the results of numerical analyses carried out in this study. Limit pressure is believed to be used as a key parameter for the estimation of soil parameters from pressuremeter tests. In practice, SBPM tests are conducted up to 10–15% cavity strains, and the strain level associated with the limit pressure state is not reached. Therefore, determination of limit pressure usually needs extrapolation. In this paper, the authors suggest to use cavity pressure at 10% strain (P10) for the interpretation of in situ... 

    Drag reduction in a channel with microstructure grooves using the lattice Boltzmann method

    , Article Journal of Physics D: Applied Physics ; Volume 50, Issue 10 , 2017 ; 00223727 (ISSN) Daeian, M. A ; Moosavi, A ; Nouri Borujerdi, A ; Taghvaei, E ; Sharif University of Technology
    Institute of Physics Publishing  2017
    Abstract
    Using the Shan-Chen lattice Boltzmann multi-phase model, we investigate the effect of adding microstructured grooves to the walls of a 2D parallel-plate channel on the pressure drop in the channel. The effects of the size of the grooves on the pressure drop in the channel were considered. It was observed that the pitch of the grooves has a considerable effect on the pressure drop in the channel, and even for some values of the pitch we observe an increase in the pressure drop. As the pitch decreases, a lower pressure drop is achieved. The results also show that as the ratio of the solid-liquid contact surface to the whole surface is decreased, the pressure drop decreases. It is also observed... 

    A design procedure for the assessment of carbon capturing and utilization of flue gas from power plant using experimental data

    , Article Chemical Engineering Research and Design ; 2017 ; 02638762 (ISSN) Rostami Dehjalali, F ; Avami, A ; Sharif University of Technology
    Institution of Chemical Engineers  2017
    Abstract
    The high dependence of the atmospheric carbon dioxide emissions on fossil fuels has led it to increment. Process design along with the economic aspects, improves the technology diffusion of the carbon capturing. In the pressure swing adsorption as a promising carbon capturing technology, increasing the pressure leads to more adsorbed amount of carbon dioxide and energy consumption of compressor, which is a source for carbon dioxide emission. Experimental data shows that for pressures between 3 to 5bar, the avoided CO2 is in maximum rate. The economic analysis reveals that the pressure of 3bar is appropriate. Also, the utilization of CO2 in the aerogel production, as a nano-based thermal... 

    Evaluation of effect of temperature and pressure on the dynamic interfacial tension of crude oil/aqueous solutions containing chloride anion through experimental and modelling approaches

    , Article Canadian Journal of Chemical Engineering ; 2017 ; 00084034 (ISSN) Lashkarbolooki, M ; Ayatollahi, S ; Sharif University of Technology
    Wiley-Liss Inc  2017
    Abstract
    The interfacial properties of crude oil are highly complex and are not yet well understood. This study aimed to evaluate the effect of temperature (30-80°C) and pressure (3.44-27.58MPa) on the dynamic interfacial tension (IFT) of crude oil/aqueous solutions consisting of 15000ppm of salt containing different chloride anions, e.g. NaCl, KCl, MgCl2, and CaCl2. To reach this goal, several parameters, such as dynamic and equilibrium IFT, adsorption time, diffusivity of resin, and asphaltene as surface-active agents from bulk of crude oil towards fluid/fluid interface and surface excess concentration of them at the interface, were compared as a function of temperature, pressure, and ion type. The...