Loading...
Search for: pressure-effects
0.007 seconds
Total 121 records

    Numerical Study of Combustion of H2-O2 Cryogenic Propellant under Supercritical Condition

    , M.Sc. Thesis Sharif University of Technology Barani, Ehsan (Author) ; Mardani, Amir (Supervisor)
    Abstract
    In order to improve performance and optimize design of high pressure combustion devices such as liquid rocket engine, gas turbine engine, and diesel engine there is a need for comprehensive understanding of injection, mixing and combustion in supercritical condition. Under this condition chamber pressure is higher than critical pressure of fuel and oxidizer. The characteristic of supercritical condition, include changing thermophysical properties such as density, CP, and compressibility factor. Therefore under this condition ideal state equation cannot correctly predict the mentioned properties. These characteristics make supercritical combustion different from other combustion regimes.... 

    The Effect of Pressure on Microstructure and Mechanical Properties of TLP Bonded Dual Phase Steels

    , M.Sc. Thesis Sharif University of Technology Fathi, Mohammad (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    Dual Phase ferritic-martensitic steels are kind of high strength low alloy steels (HASLA) which are widely used in industry because of their strength and formability. Since welding of dual phase steels in conventional welding methods causes structural change and Subsequently alters mechanical properties of both weld zone and heat affected zone(HAZ), additional operations which are not commercially viable is needed to achieve a dual phase structure in structurally changed regions. In this study, transient liquid phase (TLP) bonding method is used during dual phasing process in order to preserve dual phase ferritic-martensitic structure and avoid extra heat treatment. Applied pressure during... 

    Modeling the Effect of Pressure on the Shrinkages Distribution

    , M.Sc. Thesis Sharif University of Technology Ahmadian, Kasra (Author) ; Davami, Parviz (Supervisor) ; Abachi, Parvin (Supervisor)
    Abstract
    Due to the shrinkage defects, casting parts is sometimes unusable; as a result, researchers is tackling porosity removal problem, so that they would be able to cast parts in a way that have the least porosity. Nowadays, simulation is used to predict the location of the porosity. The design and the elimination of defects, which leads to additional costs, can reduce the overall costs in the projects.
    In this thesis, we focus on shrinkage defects. The main cause of porosity is the drop of pressure. As a matter of fact, the thermal agitation of the molecules is weaker than the strong intermolecular forces that would pull the molecules; therefore, the molten metals’ density will be increased... 

    Modelling of 2D Fluidized Beds using the DPM Method and Investigation of the Pressure Effect on Particle-Wall Collision Frequency

    , M.Sc. Thesis Sharif University of Technology Arjomandi Lari, Mojtaba (Author) ; Molaei Dehkordi, Asghar (Supervisor)
    Abstract
    In this work, a comprehensive survey on the different methods of modeling fluidized beds was done. Finally, the discrete particle method with soft particle approach was selected as the method of modeling the solid phase. For the gas phase, computational fluid dynamics (CFD) as the method of modeling is used. In order to verify our simulation results for the solid phase, a simulation of a bed with many particles distributed all around the bed was done. At the first second of the simulation, the gas phase flow was truned off and the particles were falling down. The results obtained with this method were verified with the references. For verification of the gas phase, a 2D bed with the gas... 

    The Effect of Pressure on the Coexistence of Superconductivity and Magnetism in RuSr2GdCu2O8 and RuSr2Gd1.4Ce0.6Cu2O10-δ

    , Ph.D. Dissertation Sharif University of Technology Fallahi, Saeed (Author) ; Akhavan, Mohammad (Supervisor)
    Abstract
    The coexistence of long-range magnetic order and superconductivity in the ruthenocuprate families, Ru1212 and Ru1222 has been studied both theoretically and experimentally. Historically these two different phases are incompatible with each other and in the most previous research reported on the coexistence of these phases, there have been observed separated magnetic and superconducting phases. However in the ruthenocuprate families, there is a single phase with both magnetic and superconducting phase which coexist with each other. It has been determined that superconductivity arises in CuO2 planes, and magnetic orders occur in RuO2. From experimental point of view, we have investigated the... 

    Modeling and estimation of unmeasured variables in a wastegate operated turbocharger

    , Article Journal of Engineering for Gas Turbines and Power ; Vol. 136, Issue. 5 , 2014 ; ISSN: 07424795 Salehi, R ; Vossoughi, G ; Alasty, A ; Sharif University of Technology
    Abstract
    Estimation of relevant turbocharger variables is crucial for proper operation and monitoring of turbocharged (TC) engines, which are important in improving fuel economy of vehicles. This paper presents mean-value models developed for estimating gas flow over the turbine and the wastegate (WG), the wastegate position, and the compressor speed in a TC gasoline engine. The turbine is modeled by an isentropic nozzle with a constant area and an effective pressure ratio calculated from the turbine upstream and downstream pressures. Another physically sensible model is developed for estimating either the WG flow or position. Provided the WG position is available, the WG flow is estimated using the... 

    Investigating the possibility of Sonofusion in Deuterated acetone

    , Article International Journal of Hydrogen Energy ; Vol. 39, issue. 21 , July , 2014 , pp. 11328-11335 ; ISSN: 03603199 Zoghi-Foumani, N ; Sadighi-Bonabi, R ; Sharif University of Technology
    Abstract
    In this article, energetic implosion of a single vapor bubble induced by a standing acoustic wave is theoretically studied and the Sonoluminescing bubble parameters involved in Sonofusion in Deuterated acetone (C3D 6O) are investigated. Parameters such as radius, wall velocity, interior temperature and pressure of the bubble influenced by various driving pressure amplitudes in Deuterated acetone at ∼0 °C are investigated. Based on the obtained results, the possibility of thermonuclear fusion inside imploding cavitation bubbles is discussed. The interior pressure of C 3D6O vapor bubbles at the collapse time is extremely high and the increase of the pressure amplitude increases the pressure... 

    Pressure effects on electroosmotic flow of power-law fluids in rectangular microchannels

    , Article Theoretical and Computational Fluid Dynamics ; Vol. 28, issue. 4 , 2014 , pp. 409-426 ; ISSN: 09354964 Vakili, M. A ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    In this paper, the fully developed electroosmotic flow of power-law fluids in rectangular microchannels in the presence of pressure gradient is analyzed. The electrical potential and momentum equations are numerically solved through a finite difference procedure for a non-uniform grid. A complete parametric study reveals that the pressure effects are more pronounced at higher values of the channel aspect ratio and smaller values of the flow behavior index. The Poiseuille number is found to be an increasing function of the channel aspect ratio for pressure assisted flow and a decreasing function of this parameter for pressure opposed flow. It is also observed that the Poiseuille number is... 

    High pressure effects on electronic and magnetic properties of LaOFeAs superconductor

    , Article Journal of Superconductivity and Novel Magnetism ; Vol. 27, issue. 7 , 2014 , p. 1689-1692 Khosroabadi, H ; Sandoghchi, M ; Akhavan, M ; Sharif University of Technology
    Abstract
    The effect of pressure has been studied on structural and electronic properties of LaOFeAs high-T c superconductor by ab initio density functional theory by using pseudopotential Quantum Espresso code. The lattice parameters and ionic positions in the ambient pressure and some high pressure up to 20 GPa have been calculated. The obtained data versus the simple scaling relation for the ionic positions and distances for mechanical pressures have been discussed. The results of band structure and magnetic moment calculations of this compound versus the applied pressure are presented in this paper. The results are compared with the other experimental and computational data in the literature  

    Investigation of segregation of large particles in a pressurized fluidized bed with a high velocity gas: A discrete particle simulation

    , Article Powder Technology ; Volume 246 , September , 2013 , Pages 398-412 ; 00325910 (ISSN) Alavi Shoushtari, N ; Hosseini, S. A ; Soleimani, R ; Sharif University of Technology
    2013
    Abstract
    A numerical study on mixing/segregation phenomena in a pressurized fluidized bed with large particles of Geldart D type of binary density but same diameter with high velocity gas was performed by the use of discrete particle simulation. Particle mixtures are composed of spherical particles with 2mm diameter and 1g/cm3 flotsam density and different jetsam densities of 1.25, 2 and 2.5g/cm3 with jetsam volume fraction of 0.5. The particles are initially packed approaching perfect mixing state in a rectangular bed and then fluidized by gas uniformly injected at the bottom of the bed. Effect of increase of pressure and density ratio was investigated and mixing/segregation behavior is discussed in... 

    Temperature and composition effect on CO2 miscibility by interfacial tension measurement

    , Article Journal of Chemical and Engineering Data ; Volume 58, Issue 5 , March , 2013 , Pages 1168-1175 ; 00219568 (ISSN) Zolghadr, A ; Escrochi, M ; Ayatollahi, S ; Sharif University of Technology
    2013
    Abstract
    Crude oil reservoirs have different temperatures, compositions, and pressures, therefore oil recovery performance by CO2 injection varies from one case to another. Furthermore, it is predicted that lower interfacial tension between injected CO2 and reservoir fluid results in more oil recovery. In this study, we investigate the effect of temperature on the equilibrium interfacial tension between CO2 and three different oil fluids at different pressures. Also minimum miscible pressure (MMP) is measured by the vanishing interfacial tension (VIT) technique to determine the temperature effect on the CO2 miscible gas injection. The results on different pure and mixtures of hydrocarbon fluids show... 

    Gas separation properties of crosslinked and non-crosslinked carboxymethylcellulose (CMC) membranes

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1921-1928 ; 10263098 (ISSN) Miremadi, S. I ; Shafiabadi, N ; Mousavi, S. A ; Amini-Fazl, M. S ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    In this study, crosslinked and non-crosslinked carboxymethylcellulose (CMC) membranes were prepared with different concentrations of polymer. Then, the permeability of pure CO2, N2, and CH4 was measured through these membranes in dry state to investigate the influence of polymer concentration and applied feed pressure on permeability and permselectivity. The permeability of CO2 through membranes was higher than the other gases. A comparison of permeabilities revealed that the permeability of N2, CO2, and CH4 increased on an average of 33, 40 and 20 percent, respectivly, by increasing the feed pressure from 6 to 10... 

    Numerical modeling of pulsating inflow to the pulmonary arteries in TCPC morphology using FSI approach

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 3 A , 2013 ; 9780791856215 (ISBN) Rajabzadeh, H. R ; Firoozabadi, B ; Saidi, M. S ; Sohrabi, S ; Mehr, S. M. N ; Sharif University of Technology
    2013
    Abstract
    The Fontan surgery is performed on patients with a single ventricle heart defect to prevent the combination of highlyoxygenated and poorly-oxygenated blood. Blood flow in total cavopulmonary connection (TCPC) which culminates an ordinary Fontan operation is practically steady-state but this flow is not appropriate for respiratory systems. This article investigates an approach in Fontan surgery that has been recently proposed in order to make the pulmonary blood flow pulsating. Moreover, for investigating the compliance of vessels and its effects on blood flow in TCPC, we have used the FSI (Fluid Structure Interaction) method as well as rigid wall assumption for comparison purposes. Our TCPC... 

    Optimization of conditions in ultrafiltration treatment of produced water by polymeric membrane using Taguchi approach

    , Article Desalination and Water Treatment ; Volume 51, Issue 40-42 , 2013 , Pages 7499-7508 ; 19443994 (ISSN) Reyhani, A ; Rekabdar, F ; Hemmati, M ; SafeKordi, A. A ; Ahmadi, M ; Sharif University of Technology
    Desalination Publications  2013
    Abstract
    In this study, the ultrafiltration of produced water was studied using a two-stage ultrafiltration process. In the first stage, the influences of operating parameters, including transmembrane pressure, temperature, and cross-flow velocity on the amount of flux decline caused by membrane fouling, were investigated using a polymeric membrane. In order to design the experiments and optimize the experimental results, the Taguchi method was applied. L9 (33) orthogonal array for experimental planning and the smaller-the-better response category was selected to obtain optimum conditions because the lowest flux decline was our aim. Analysis of variance was used to determine the most important... 

    Experimental determination of hydrate phase equilibrium curve for an Iranian sour gas condensate sample

    , Article Journal of Natural Gas Science and Engineering ; Volume 9 , November , 2012 , Pages 11-15 ; 18755100 (ISSN) Kamari, E ; Oyarhossein, M ; Sharif University of Technology
    2012
    Abstract
    Iran's proved natural gas reserves are the world's second largest. Mainly, because of climate changes and different reservoirs' characterizations, studying the behavior of production fluids and their transportation is essential. One of the main problems which occurs in the gas reservoirs is related to the hydrate formation while producing from a well, either in production strings or production lines (before and after choke). Effective parameters which influence the formation of hydrates are: high pressure, low temperature and water presence; and therefore, the high possibility of having this phenomenon in Iranian reservoirs is quite obvious especially in cold climates and for gas wells.... 

    Hydrodynamic and thermal characteristics of combined electroosmotic and pressure driven flow in a microannulus

    , Article Journal of Heat Transfer ; Volume 134, Issue 10 , 2012 ; 00221481 (ISSN) Yavari, H ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    ASME  2012
    Abstract
    The present study considers both the hydrodynamic and thermal characteristics of combined electroosmotic and pressure driven flow in a microannulus. Analytical solutions are presented using the Debye-Hückel linearization along with the uniform Joule heating and negligible viscous dissipation assumptions, whereas exact results are achieved numerically. Here, the range of validity for the Debye-Hückel linearization is found to be about two times of that for a parallel plate microchannel. Accordingly, this linearization may successfully be used to evaluate the potential and velocity distributions up to the zeta potentials of 100 mV, provided that the dimensionless Debye-Hückel parameter is... 

    Analytical Solution for Isothermal Flow in a Shock Tube Containing Rigid Granular Material

    , Article Transport in Porous Media ; Volume 93, Issue 1 , 2012 , Pages 13-27 ; 01693913 (ISSN) Hayati, A. N ; Ahmadi, M. M ; Mohammadi, S ; Sharif University of Technology
    2012
    Abstract
    Analytical solution of shock wave propagation in pure gas in a shock tube is usually addressed in gas dynamics. However, such a solution for granular media is complex due to the inclusion of parameters relating to particles configuration within the medium, which affect the balance equations. In this article, an analytical solution for isothermal shock wave propagation in an isotropic homogenous rigid granular material is presented, and a closed-form solution is obtained for the case of weak shock waves. Fluid mass and momentum equations are first written in wave and (mathematical) non-conservation forms. Afterwards by redefining the sound speed of the gas flowing inside the pores, an... 

    Toward an equation of state for water inside carbon nanotubes

    , Article Journal of Physical Chemistry B ; Volume 116, Issue 16 , April , 2012 , Pages 4943-4951 ; 15206106 (ISSN) Sadeghi, M ; Parsafar, G. A ; Sharif University of Technology
    American Chemical Society  2012
    Abstract
    Water inside carbon nanotubes as an example of nanoconfined water has gained noticeable attention, in both theoretical and applied aspects. Molecular simulation has played a major role in the studies in this field. Yet, there is a need for systematic study of simulation results and compilation of scientifically reliable predictive relations. Here we present Monte Carlo simulations of water inside carbon nanotubes with different radii. An equation of state which was derived on the basis of the extended Lennard-Jones (12,6,3) as the effective pair potential is chosen for the system of water inside the carbon nanotubes. The equation of state is modified to take the effects of anisotropic... 

    An experimental design approach to determine effects of the operating parameters on the rate of Ru promoted Ir carbonylation of methanol

    , Article World Academy of Science, Engineering and Technology ; Volume 73 , March , 2011 , Pages 598-603 ; 2010376X (ISSN) Hosseinpour, V ; Kazemini, M ; Mohammadrezaee, A ; Sharif University of Technology
    Abstract
    carbonylation of methanol in homogenous phase is one of the major routesfor production of acetic acid. Amongst group VIII metal catalysts used in this process iridium has displayed the best capabilities. To investigate effect of operating parameters like: temperature, pressure, methyl iodide, methyl acetate, iridium, ruthenium, and water concentrations on the reaction rate, experimental design for this system based upon central composite design (CCD) was utilized. Statistical rate equation developed by this method contained individual, interactions and curvature effects of parameters on the reaction rate. The model with p-value less than 0.0001 and R 2 values greater than 0.9; confirmeda... 

    Treatment of oilfield produced water by dissolved air precipitation/solvent sublation

    , Article Journal of Petroleum Science and Engineering ; Volume 80, Issue 1 , 2011 , Pages 26-31 ; 09204105 (ISSN) Bayati, F ; Shayegan, J ; Noorjahan, A ; Sharif University of Technology
    Abstract
    Dissolved air precipitation/solvent sublation (DAP/SS) was used for treatment of simulated and real oilfield produced water to generate very fine bubbles which are necessary for effective separation. In this method micro bubbles produced by saturation of air in a pressurized packed column were released in an atmospheric column leading the bubbles to raise resulting trapped contaminants in the Gibbs layer around them to be removed by a layer of immiscible solvent at the top of column. The method was conducted to solutions including Benzene, Toluene and Chlorobenzene (ClB) as part of BTEX contaminants in produced water, mixture of them as simulated produced water and real oilfield produced...