Loading...
Search for: thermodynamic-properties
0.007 seconds

    Effect of synthesis method on magnetic and thermal properties of polyvinylidene fluoride/Fe3O4 nanocomposites

    , Article Journal of Reinforced Plastics and Composites ; Volume 32, Issue 14 , 2013 , Pages 1044-1051 ; 07316844 (ISSN) Frounchi, M ; Hadi, M ; Sharif University of Technology
    2013
    Abstract
    Polyvinylidene fluoride magnetic nanocomposite films were prepared by solution casting using two types of magnetic nanoparticles: (a) magnetic nanoparticles synthesized by co-precipitation method using oleic acid as a coating agent and (b) Fe3O4 nanoparticles prepared by hydrolysis method without using a coating agent. Dynamic light scattering measurements showed mean diameters of 135 and 46 nm in co-precipitation and hydrolysis methods, respectively. Scanning electron microscopy showed that the magnetic nanoparticles were uniformly dispersed inside the polymer matrix. X-ray diffraction confirmed that Fe3O4 nanoparticles induced nucleation of β- crystalline phase in the matrix polymer. The... 

    Atomistic study of the lattice thermal conductivity of rough graphene nanoribbons

    , Article IEEE Transactions on Electron Devices ; Volume 60, Issue 7 , 2013 , Pages 2142-2147 ; 00189383 (ISSN) Karamitaheri, H ; Pourfath, M ; Faez, R ; Kosina, H ; Sharif University of Technology
    2013
    Abstract
    Following our recent study on the electronic properties of rough nanoribbons , in this paper the role of geometrical and roughness parameters on the thermal properties of armchair graphene nanoribbons is studied. Employing a fourth nearest-neighbor force constant model in conjuction with the nonequilibrium Green's function method the effect of line-edge-roughness on the lattice thermal conductivity of rough nanoribbons is investigated. The results show that a reduction of about three orders of magnitude of the thermal conductivity can occur for ribbons narrower than 10 nm. The results indicate that the diffusive thermal conductivity and the effective mean free path are directly proportional... 

    Effects of cylindrical and sheet types of nanoparticles on thermal properties and chain folding free energy of poly(ethylene terephthalate)

    , Article Journal of Reinforced Plastics and Composites ; Volume 32, Issue 11 , 2013 , Pages 846-859 ; 07316844 (ISSN) Goodarzi, V ; Shadakhtar, A ; Sirousazar, M ; Mortazavi, M ; Ghaniyari Benis, S ; Sharif University of Technology
    2013
    Abstract
    Poly(ethylene terephthalate) (PET) nanocomposites were prepared through a solution casting method using Multi wall carbon nanotubes (MWCNT) and organically modified montmorillonite (OMMT) as nanoparticles and their morphological and thermal properties investigated. The X-ray diffraction and transmission electron microscopy measurements showed that decreasing the ratio of MWCNT to OMMT for the same amount of OMMT creates better conditions for intercalation of PET macromolecules and promotes the transformation of OMMT nanostructures from the intercalated to exfoliated state. It was concluded that the Ozawa's model was not suitable to interpret the crystallization behavior of the... 

    Thermoeconomic approach for optimal design of gas turbine heat recovery steam generator

    , Article Proceedings of the 26th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2013 ; July , 2013 Hanafizadeh, P ; Parhizgar, T ; Ghorbanian, K ; Sharif University of Technology
    China International Conference Center for Science and Technology  2013
    Abstract
    In the present study a comprehensive thermoeconomic modelling of a heat recovery steam generator (HRSG) for a typical 4MW class gas turbine is performed. Usually, the thermoeconomic analyses involve a thermodynamic model of the HRSG and an economic model dedicated to assess the cost. In this study, different configurations of single and dual pressure level HRSGs are optimized and afterward compared to find the economical design. For these configurations thermodynamic model calculates the performance and the energy balance of systems at the optimal operating conditions which are derived from optimization model, and economic model estimates total cost per unit of produced energy. Finally,... 

    Thermodynamic properties of aqueous salt containing urea solutions

    , Article Fluid Phase Equilibria ; Volume 325 , July , 2012 , Pages 71-79 ; 03783812 (ISSN) Sadeghi, M ; Held, C ; Samieenasab, A ; Ghotbi, C ; Abdekhodaie, M. J ; Taghikhani, V ; Sadowski, G ; Sharif University of Technology
    2012
    Abstract
    Urea and inorganic ions are present in some of the physiological systems, e.g. urine. Understanding the interactions in urea/salt/water is a preliminary step to shed light on more complicated behavior of multi-component physiological systems. State-of-the-art models as well as thermophysical properties can be applied to understand the interactions in these systems. In order to determine such interactions densities, mean ionic activity coefficients (MIACs), osmotic coefficients, and solubility were measured in aqueous solutions of urea and different salts. Densities were determined at temperatures 293.15, 303.15, and 313.15K for urea concentrations up to 3molal and up to 1molal for NaCl.... 

    Synthesis and characterization of Ce-TZP/Al 2O 3 nanocomposites prepared via aqueous combustion

    , Article Journal of Alloys and Compounds ; Volume 514 , February , 2012 , Pages 150-156 ; 09258388 (ISSN) Asadirad, M ; Yoozbashizadeh, H ; Sharif University of Technology
    2012
    Abstract
    Nanocomposites of Ce-TZP/Al 2O 3 were synthesized by aqueous combustion, and urea, ammonium acetate and glycine were used as mixtures of fuels with the corresponding metal nitrates. Thermodynamic modeling was conducted to anticipate the effect of the alumina content on the exothermicity of the combustion procedure. The thermodynamic properties of the combustion reaction indicated that as the alumina content increased, the amount of gases produced during the reaction increased with a decrease in the adiabatic temperature. Furthermore, to reduce the particle size of the powders, a series of combustion reactions were performed to optimize the fuel composition and alumina content. Ce 0.1Zr 0.9O... 

    Prediction of asphaltene precipitation during solvent/CO2 injection conditions: A comparative study on thermodynamic micellization model with a different characterization approach and solid model

    , Article Journal of Canadian Petroleum Technology ; Volume 50, Issue 3 , 2011 , Pages 65-74 ; 00219487 (ISSN) Tavakkoli, M ; Masihi, M ; Ghazanfari, M. H ; Kharrat, R ; Sharif University of Technology
    Abstract
    There are different thermodynamic models that have been applied for modelling of asphaltene precipitation caused by various reasons, such as solvent/CO2 injection and pressure depletion. In this work, two computer codes based on two different asphaltene precipitation thermodynamic models-the first being the thermodynamic micellization model with a different characterization approach and the second being the solid model-have been developed and used for predicting asphaltene precipitation data reported in the literature as well as in the obtained data for Sarvak reservoir crude, which is one of the most potentially problematic Iranian heavy oil reserves under gas injection conditions. For the... 

    A comprehensive study on CO2 solubility in brine: Thermodynamic-based and neural network modeling

    , Article Fluid Phase Equilibria ; Volume 403 , October , 2015 , Pages 153-159 ; 03783812 (ISSN) Sadeghi, M ; Salami, H ; Taghikhani, V ; Robert, M. A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Phase equilibrium data are required to estimate the capacity of a geological formation to sequester CO2. In this paper, a comprehensive study, including both thermodynamic and neural network modeling, is performed on CO2 solubility in brine. Brine is approximated by a NaCl solution. The Redlich-Kwong equation of state and Pitzer expansion are used to develop the thermodynamic model. The equation of state constants are adjusted by genetic algorithm optimization. A novel approach based on a neural network model is utilized as well. The temperature range in which the presented model is valid is 283-383K, and for pressure is 0-600bar, covering the temperature and pressure... 

    A rigorous approach to predict nitrogen-crude oil minimum miscibility pressure of pure and nitrogen mixtures

    , Article Fluid Phase Equilibria ; Volume 399 , 2015 , Pages 30-39 ; 03783812 (ISSN) Fathinasab, M ; Ayatollahi, S ; Hemmati Sarapardeh, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Nitrogen has been appeared as a competitive gas injection alternative for gas-based enhanced oil recovery (EOR) processes. Minimum miscibility pressure (MMP) is the most important parameter to successfully design N2 flooding, which is traditionally measured through time consuming, expensive and cumbersome experiments. In this communication, genetic programming (GP) and constrained multivariable search methods have been combined to create a simple correlation for accurate determination of the MMP of N2-crude oil, based on the explicit functionality of reservoir temperature as well as thermodynamic properties of crude oil and injection gas. The parameters of the developed... 

    Investigation of Thermomechanical Properties of UHMWPE/Graphene Oxide Nanocomposites Prepared by in situ Ziegler-Natta Polymerization

    , Article Advances in Polymer Technology ; Volume 34, Issue 4 , February , 2015 ; 07306679 (ISSN) Bahrami, H ; Ramazani, A.S.A ; Kheradmand, A ; Shafiee, M ; Baniasadi, H ; Sharif University of Technology
    John Wiley and Sons Inc  2015
    Abstract
    The graphene-based Ziegler-Natta catalyst has been used to prepare ultrahigh molecular weight polyethylene/graphene oxide (UHMWPE/GO) nanocomposite via in situ polymerization. The morphological investigations have been conducted using X-ray diffraction patterns and scanning electron microscopy method. The obtained results indicated that no diffraction peak is detected in a GO pattern, which could be due to the exfoliation of graphene nanosheets in the UHMWPE matrix. Morphological investigations indicated that GO nanosheets are dispersed almost uniformly in polymeric matrix, and that there should exist a good interaction between nanofillers and matrix. The mechanical properties of the... 

    Effect of side by side interactions on the thermodynamic properties of adsorbed CO molecules on the Ni(111) surface: A cluster model study

    , Article Molecular Physics ; Volume 108, Issue 10 , 2010 , Pages 1397-1412 ; 00268976 (ISSN) Shamkhali, A. N ; Parsafar, G ; Sharif University of Technology
    Abstract
    The effect of electrostatic interactions on vibrational frequencies and thermodynamic properties of CO adsorbate on the Ni(111) surface is calculated by taking the first and second nearest-neighbour interactions into account. In order to obtain reasonable results, the cluster model of various surface adsorption sites with CO adsorbate is partially optimized, using Density Functional Theory and also the MP2 method for the hcp site. Comparison between DFT and MP2 results shows that DFT results are more reliable for this system. The stretching and bending frequencies of CO adsorbate are calculated using both Partial Hessian Analysis and Cluster-Adsorbate Coupling methods. Stretching and bending... 

    Investigating the effect of the heat transfer correlation on the predictability of a multi-zone combustion model of a hydrogen-fuelled spark ignition engine

    , Article Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering ; Volume 230, Issue 1 , 2016 , Pages 70-81 ; 09544070 (ISSN) Tabatabaie, T ; Ehteram, M. A ; Hosseini, V ; Sharif University of Technology
    SAGE Publications Ltd 
    Abstract
    Research on the heat transfer in hydrogen-fuelled spark ignition engines indicates that the two most common heat transfer correlations, namely the Annand correlation and the Woschni correlation, cannot perfectly predict the heat flux during the engine cycle. This questions the accuracy of thermodynamic hydrogen engine models because the heat transfer is one of the important submodels in the development of a thermodynamic model. In addition, the Hohenberg correlation and the Shudo-Suzuki correlation have not been evaluated for hydrogen engines. In this study, a thermodynamic model of the closed cycle of a spark ignition engine is developed with a multi-zone combustion submodel to predict the... 

    The simulations of flow and heat over microscale sensors in supersonic rarefied gas flows using DSMC

    , Article ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, 4 January 2016 through 6 January 2016 ; Volume 2 , 2016 ; 9780791849668 (ISBN) Darbandi, M ; Mosayebi, G ; Sharif University of Technology
    American Society of Mechanical Engineers 
    Abstract
    As the use of MEMS-based devices and systems are continuously increasing, the understanding of their correct characteristics becomes so serious for the related researches. In this study, the supersonic rarefied gas flow over microscale hotwires is investigated using the Direct Simulation Monte Carlo (DSMC) method. Indeed, the DSMC has been accepted as a powerful method to study the rarefied gas flow especially in transitional regime. Therefore, it can be considered as a reliable method to investigate the rarefied supersonic flow over microscale objects including the microscale hotwires. In this work, we study the effective parameters, which affect the performance of these sensors at constant... 

    The uncertainties of continuum-based cfd solvers to perform microscale hot-wire anemometer simulations in flow fields close to transitional regime

    , Article ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2016, 4 January 2016 through 6 January 2016 ; Volume 2 , 2016 ; 9780791849668 (ISBN) Darbandi, M ; Ghorbani, M. R ; Darbandi, H ; Heat Transfer Division ; Sharif University of Technology
    American Society of Mechanical Engineers  2016
    Abstract
    In this study, we simulate the flow and heat transfer during hot-wire anemometry and investigate its thermal behavior and physics using the Computational Fluid Dynamics (CFD) tool. In this regard, we use the finite-volume method and solve the compressible Navier-Stokes equations numerically in slightly non-continuum flow fields. We do not use any slip flow model to include the transitional flow physics in our simulations. Using the CFD method, we simulate the flow over hot-wire and evaluate the uncertainty of CFD in thermal simulation of hot-wire in low transitional flow regimes. The domain sizes and the mesh distributions are carefully chosen to avoid boundary condition error appearances.... 

    Simulation and multi-objective optimization of a combined heat and power (CHP) system integrated with low-energy buildings

    , Article Journal of Building Engineering ; Volume 5 , 2016 , Pages 13-23 ; 23527102 (ISSN) Pirkandi, J ; Jokar, M. A ; Sameti, M ; Kasaeian, A ; Kasaeian, F ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    One of the novel applications of gas turbine technology is the integration of combined heat and power (CHP) system with micro-gas turbine which is spreading widely in the field of distributed generation and low-energy buildings. It has a promising great potential to meet the electrical and heating demands of residential buildings. In this study, a MATLAB code was developed to simulate and optimize the thermoeconomic performance of a gas turbine based CHP cycle. Three design parameters of this cycle considered in this research are compressor pressure ratio, turbine inlet temperature, and air mass flow rate. Firstly, two objective functions including exergetic efficiency and net power output... 

    The effect of mechanical and thermal properties of FRP bars on their tensile performance under elevated temperatures

    , Article Construction and Building Materials ; Volume 157 , 2017 , Pages 1001-1010 ; 09500618 (ISSN) Ashrafi, H ; Bazli, M ; Najafabadi, E. P ; Vatani Oskouei, A ; Sharif University of Technology
    Abstract
    In this experimental study the effect of physical and thermal properties of various FRP bars on their performance under elevated temperatures are investigated. The parameters included the bars' diameter, type of fiber, type of resin, fiber to matrix ratio, and thermal properties were studied. Moreover, ANOVA (ANalysis Of VAriance) was performed in order to investigate the contribution of each variable on the obtained results. The results showed that in addition to the temperature, the bars' diameter, type of fiber, type of resin, and thermal properties (Tg and Td) of the FRP bars have contributions to the results, while the fiber to matrix ratio was found to be an ineffective factor. It was... 

    Polyurethane/clay nanocomposites reinforced with carbon and glass fibres: study of mechanical and thermal properties, and the effect of electron beam irradiation

    , Article Plastics, Rubber and Composites ; Volume 46, Issue 9 , 2017 , Pages 413-420 ; 14658011 (ISSN) Kosari, M ; Mousavian, S. M. A ; Razavi, S. M ; Ahmadi, S. J ; Izadipanah, M ; Sharif University of Technology
    Abstract
    Polyurethane (PU) nanocomposites with 0, 1, 3, 5, and 7 wt-% nanoclay contents were prepared. X-ray diffraction patterns, transmission electron microscopy images, tensile test, and thermogravimetric analysis were utilised to reveal the morphological, mechanical, and thermal-resistant properties of the prepared nanocomposites. The exfoliated structure was obtained for nanoclay contents up to 3 wt-%. Incorporation of nanoclay to the PU matrix prompted the thermal stability of the polymer. A nanocomposite filled with 3 wt-% nanoclay showed the best tensile strength in the prepared nanocomposites. Subsequently, the nanocomposite with the 3 wt-% nanoclay was reinforced with carbon and glass... 

    Effect of rare earth elements addition on thermal fatigue behaviors of AZ91 magnesium alloy

    , Article Journal of Rare Earths ; Volume 27, Issue 2 , 2009 , Pages 255-258 ; 10020721 (ISSN) Bayani, H ; Saebnoori, E ; Sharif University of Technology
    Chinese Society of Rare Earths  2009
    Abstract
    Influences of rare earth (RE) elements addition on thermal fatigue behaviors of AZ91 alloy were studied. Repeated heating and cooling cycles were applied on the samples at 170 and 210 °C to develop thermal fatigue cracks. Crack growth mechanisms and microstructural influences were investigated by optical and scanning electron microscopy (SEM) as well as energy dispersive X-ray spectroscopy (EDS). Thermal fatigue behaviors were observed to improve successively by addition of the RE up to 2wt.%. This improvement was attributed to the consummation of aluminum in melt by precipitation of the needle shaped Al11RE3 phases. This process was attributed to the reduction of Mg17Al12 phase volume... 

    Modeling of aqueous biomolecules using a new free-volume group contribution model

    , Article Industrial and Engineering Chemistry Research ; Volume 48, Issue 8 , 2009 , Pages 4109-4118 ; 08885885 (ISSN) Pazuki, G. R ; Taghikhani, V ; Vossoughi, M ; Sharif University of Technology
    2009
    Abstract
    In this article, a new group contribution model is suggested for obtaining the thermodynamic properties of biomolecules in aqueous solutions. Accordingly, a Freed-FV model has been applied for the combinatorial free-volume term. The activity coefficients, solubilities, densities, and vapor pressures of amino acids and simple peptides in aqueous solutions were correlated, using the proposed group contribution model. Group interaction parameters of the proposed model were obtained by use of experimental data from amino acids available in the literature. The results demonstrate that the group contribution model can accurately correlate activity coefficient, solubility, density, and vapor... 

    Spectroscopic and thermodynamic studies of interaction between dopamine and cobalt (III) schiff-base complexes

    , Article Scientia Iranica ; Volume 16, Issue 2 C , 2009 , Pages 89-93 ; 10263098 (ISSN) Baniyaghoob, S ; Boghaei, D. M ; Sharif University of Technology
    2009
    Abstract
    In this paper, the interactions of cobalt(III) tetradentate Schiff-base complexes, [Co(S-MeO-salophen)]ClO4, (1), [Co(5-NO 2-salophen)]ClO4, (2), and [Co(5-Br-salophen)]ClO 4, (3), with dopamine, an important neurotransmitter, have been investigated. The formation and kinetic constants for complex formation of [Co(3-MeO-salophen)]ClO4, (1), with dopamine were determined spectrophotometrically in H2O/EtOH solution (4:1) at 30°C by using the Benesi-Hildbrand and Guggenheim equations, respectively. The stoichiometry has been found to be 1:1. The rate and equilibrium constants for the coordination of dopamine to (Co(3-MeO-salophen)]ClO4 were found to be 0.0053 min-1 and 1600 dm3 mol-1,...