Loading...
Search for: thermodynamic-properties
0.023 seconds
Total 79 records

    Complexity of Density Dependencies of Thermal- and Internal- Pressure Compared to that of Total Pressure

    , M.Sc. Thesis Sharif University of Technology Sajjadi, Hashem (Author) ; Parsafar, Gholamabbas (Supervisor) ; Goharshadi, Elaheh (Supervisor)
    Abstract
    A simple equation of state (EoS) has recently been introduced (J. Phys. Chem. B 2009, 113, 11977–11987) as (Z-1) v^2=e+f⁄ρ+gρ^2, where Z≡pv⁄RT is the compressibility factor, v=1⁄ρ is molar volume, and e, f, and g are temperature dependent parameters. This EoS has been found to be accurate for all types of nano- and bulk- solids and bulk fluids, in the entire temperature and pressure ranges for which experimental data are reported, except for the isotherms within the critical region.
    The aim of this work is to investigate the validity of a 3-term expression similar to the mentioned EoS for both thermal and internal contributions to the compressibility factor, separately. Such... 

    Calculation of the Thermodynamical Properties of [BMIM][PF6] via Equation of State and Molecular Dynamic Simulations Data

    , M.Sc. Thesis Sharif University of Technology Geraili, Hossein (Author) ; Parsafar, Gholamabbas (Supervisor) ; Tafazzoli, Mohsen (Supervisor) ; Shamkhali, Amir Naser (Co-Advisor)
    Abstract
    In this thesis, We have investigated the accuracy of general equation of state ( EoS III ) and linear isotherm regularity ( EoS I ), introduced on 2009 and 1993, respectively, and the Ghatee’s equation of state ( EoS II ) introduced on 2001, for the pvT data and thermodynamic properties of [BMIM][PF6] ionic liquid. We have carried out simulations at first in a narrow range of pressure, namely within 1-3400 atm and in temperature range from 398 K to 1000 K. The results of fitting of EoS I, EoS II and EoS III into the simulations results, leads to R2 > 0.9936, 0.9800 and 0.9949 respectively, for the pressure range of 1-3400 atm and for the temperature range of 398-1000 K. The results of... 

    Thermodynamic Properties of Aqueous Electrolyte Solutions Containing Urea

    , M.Sc. Thesis Sharif University of Technology Samieenasab, Ahmad Reza (Author) ; Ghotbi, Siroos (Supervisor) ; Taghikhani, Vahid (Supervisor)
    Abstract
    The behavior of biomolecules in mixtures is affected by the presence of electrolytes. For instance, in the presence of an electrolyte, solubility of most biomolecules like proteins,peptids and amino acids can be increased or decreased. As a biomolecule, urea is a protein denaturant and influences protein folding and protein-DNA binding. The presence of ions can affect the interactions between urea and water In this thesis, experimental data of density and electrical conductance of aqueous solutions of urea-NaCl were obtained at different physical conditions. Density measurement experiments were carried out at different temperatures from 20-40 oC. Apparent and infinite dilution molar volumes... 

    Theoretical Investigation of Carbon Monoxide Adsorption on the Nickel Surface in the Macroscopic and Microscopic Scales

    , Ph.D. Dissertation Sharif University of Technology Shamkhali, Amir Nasser (Author) ; Parsafar, Gholamabbas (Supervisor)
    Abstract
    In this work, CO interaction with macroscopic Ni(111) surface and microscopic Nin (n = 2-4) clusters were investigated. First, the CO interaction with various adsorption sites were studied by DFT methods on Ni(111) surface. On the basis of these calculations, hcp site has the strongest interaction with CO adsorbate. Then, the vibrational frequencies of C=O and adsorptive bond on the hcp site were calculated and the results show that anharmonicity of adsorptive bond is more important than C=O bond. Therefore, three potential models are considered for adsorptive bond and the effect of potential models on its thermodynamic properties was investigated. The results show that the effect of... 

    Investigation of Thermodynamic and Dynamic Properties of Some Solids and Fluids with Nano Dimensions Using Molecular Dynamics Simulation

    , Ph.D. Dissertation Sharif University of Technology Akbarzadeh, Hamed (Author) ; Parsafar, Gholam Abbas (Supervisor)
    Abstract
    The physical characteristics of Pt nanoclusters with different sizes (256-8788 atoms) have been investigated via molecular dynamics simulations. The Pt-Pt radial distribution function, internal energy, heat capacity, enthalpy, entropy of the nanoclusters are calculated at some temperatures. The melting point predicted by the various properties is consistent with each other and shows that the melting temperature increases with the particle size. We have calculated the Gibbs free energy for the Pt bulk and also for its nanoparticle. We have used the thermodynamic integration method to obtain the Gibbs free energy. The total Gibbs free energy is taken as the sum of its central bulk and its... 

    Use of atomistic phonon dispersion and boltzmann transport formalism to study the thermal conductivity of narrow Si nanowires

    , Article Journal of Electronic Materials ; Volume 43, Issue 6 , 2014 , Pages 1829-1836 ; ISSN: 03615235 Karamitaheri, H ; Neophytou, N ; Kosina, H ; Sharif University of Technology
    Abstract
    We study the thermal properties of ultra-narrow silicon nanowires (NW) with diameters from 3 nm to 12 nm. We use the modified valence-force-field method for computation of phononic dispersion and the Boltzmann transport equation for calculation of phonon transport. Phonon dispersion in ultra-narrow 1D structures differs from dispersion in the bulk and dispersion in thicker NWs, which leads to different thermal properties. We show that as the diameter of the NW is reduced the density of long-wavelength phonons per cross section area increases, which increases their relative importance in carrying heat compared with the rest of the phonon spectrum. This effect, together with the fact that... 

    Three-dimensional analysis of fluid flow and heat transfer in the microchannel heat sink using additive-correction multigrid technique

    , Article 1st ASME Micro/Nanoscale Heat Transfer International Conference, MNHT08, Tainan, 6 January 2008 through 9 January 2008 ; Volume Parts A and B , 2008 , Pages 679-689 ; 0791842924 (ISBN); 9780791842928 (ISBN) Asgari, O ; Saidi, M. H ; Sharif University of Technology
    2008
    Abstract
    Heat generation from very large-scale integrated (VLSI) circuits increases with the advent of high-density integrated circuit technology. One of the promising techniques is liquid cooling by using microchannel heat sink. Numerical works on the microchannel heat sink in the literature are mostly two dimensional. The purpose of the present study is to develop a three-dimensional analysis procedure to investigate flow and conjugate heat transfer in the microchannel-based heat sink for electronic packaging applications. The micro-heat sink model consists of a 10 mm long silicon substrate, with rectangular microchannels, 57 μm wide and 180 μm deep, fabricated along the entire length. A finite... 

    The uncertainties of continuum-based cfd solvers to perform microscale hot-wire anemometer simulations in flow fields close to transitional regime

    , Article ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2016, 4 January 2016 through 6 January 2016 ; Volume 2 , 2016 ; 9780791849668 (ISBN) Darbandi, M ; Ghorbani, M. R ; Darbandi, H ; Heat Transfer Division ; Sharif University of Technology
    American Society of Mechanical Engineers  2016
    Abstract
    In this study, we simulate the flow and heat transfer during hot-wire anemometry and investigate its thermal behavior and physics using the Computational Fluid Dynamics (CFD) tool. In this regard, we use the finite-volume method and solve the compressible Navier-Stokes equations numerically in slightly non-continuum flow fields. We do not use any slip flow model to include the transitional flow physics in our simulations. Using the CFD method, we simulate the flow over hot-wire and evaluate the uncertainty of CFD in thermal simulation of hot-wire in low transitional flow regimes. The domain sizes and the mesh distributions are carefully chosen to avoid boundary condition error appearances.... 

    The simulations of flow and heat over microscale sensors in supersonic rarefied gas flows using DSMC

    , Article ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, 4 January 2016 through 6 January 2016 ; Volume 2 , 2016 ; 9780791849668 (ISBN) Darbandi, M ; Mosayebi, G ; Sharif University of Technology
    American Society of Mechanical Engineers 
    Abstract
    As the use of MEMS-based devices and systems are continuously increasing, the understanding of their correct characteristics becomes so serious for the related researches. In this study, the supersonic rarefied gas flow over microscale hotwires is investigated using the Direct Simulation Monte Carlo (DSMC) method. Indeed, the DSMC has been accepted as a powerful method to study the rarefied gas flow especially in transitional regime. Therefore, it can be considered as a reliable method to investigate the rarefied supersonic flow over microscale objects including the microscale hotwires. In this work, we study the effective parameters, which affect the performance of these sensors at constant... 

    Thermoeconomic approach for optimal design of gas turbine heat recovery steam generator

    , Article Proceedings of the 26th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2013 ; July , 2013 Hanafizadeh, P ; Parhizgar, T ; Ghorbanian, K ; Sharif University of Technology
    China International Conference Center for Science and Technology  2013
    Abstract
    In the present study a comprehensive thermoeconomic modelling of a heat recovery steam generator (HRSG) for a typical 4MW class gas turbine is performed. Usually, the thermoeconomic analyses involve a thermodynamic model of the HRSG and an economic model dedicated to assess the cost. In this study, different configurations of single and dual pressure level HRSGs are optimized and afterward compared to find the economical design. For these configurations thermodynamic model calculates the performance and the energy balance of systems at the optimal operating conditions which are derived from optimization model, and economic model estimates total cost per unit of produced energy. Finally,... 

    Thermodynamic properties of aqueous salt containing urea solutions

    , Article Fluid Phase Equilibria ; Volume 325 , July , 2012 , Pages 71-79 ; 03783812 (ISSN) Sadeghi, M ; Held, C ; Samieenasab, A ; Ghotbi, C ; Abdekhodaie, M. J ; Taghikhani, V ; Sadowski, G ; Sharif University of Technology
    2012
    Abstract
    Urea and inorganic ions are present in some of the physiological systems, e.g. urine. Understanding the interactions in urea/salt/water is a preliminary step to shed light on more complicated behavior of multi-component physiological systems. State-of-the-art models as well as thermophysical properties can be applied to understand the interactions in these systems. In order to determine such interactions densities, mean ionic activity coefficients (MIACs), osmotic coefficients, and solubility were measured in aqueous solutions of urea and different salts. Densities were determined at temperatures 293.15, 303.15, and 313.15K for urea concentrations up to 3molal and up to 1molal for NaCl.... 

    Thermodynamic modeling of partially stratified charge engine characteristics for hydrogen-methane blends at ultra-lean conditions

    , Article International Journal of Hydrogen Energy ; Volume 38, Issue 25 , August , 2013 , Pages 10640-10647 ; 03603199 (ISSN) Aliramezani, M ; Chitsaz, I ; Mozafari, A. A ; Sharif University of Technology
    2013
    Abstract
    A thermodynamic model considering flame propagation is presented to predict SI engine characteristics for hydrogen-methane blends. The partially charge stratification approach which involves micro direct injection of pure fuel or a fuel-air mixture, to create a rich zone near the spark plug, is proposed as a method to improve engine performance. Presented approach was validated with experimental data for the natural gas at lean condition. The model was generalized to predict the performance of engine for a variety of hydrogen contents in hydrogen-methane blends. Hydrogen molar concentrations of 0%, 15%, 30%, and 45% were used in the simulations. Results showed that partially charge... 

    Thermodynamic modeling for hydrogen production from biomass and evaluation of biomass energy technologies

    , Article Biotechniques for Air Pollution Control - Proceedings of the 3rd International Congress on Biotechniques for Air Pollution Control, 28 September 2009 through 30 September 2009, Delft ; 2010 , Pages 269-273 ; 9780415582704 (ISBN) Hemmati, Sh ; Saboohi, Y ; Hashemi, N ; Vossoughi, M ; Pazuki, G. R ; Sharif University of Technology
    2010
    Abstract
    Compared with fossil fuel, biomass is a clean energy with zero CO 2 emission, because CO 2 is fixed by photosynthesis during biomass growth and released again during utilization. Due to its low energy density, direct use of biomass is not convenient. Thus, it is necessary to convert biomass to fuel gas, such as hydrogen, which can be used cleanly and highly efficiently in fuel cell. Thermo-chemical gasification is likely to be the most cost-effective conversion process and it is promising technology for renewable hydrogen production by utilizing biomass. Biomass gasification produces a mixture of gases (mainly consisting of H 2, CO, CO 2, CH 4 and higher hydrocarbons), solids (char) and... 

    Thermodynamic analysis of Ti-Al-C intermetallics formation by mechanical alloying

    , Article Journal of Alloys and Compounds ; Volume 576 , 2013 , Pages 317-323 ; 09258388 (ISSN) Sadeghi, E ; Karimzadeh, F ; Abbasi, M. H ; Sharif University of Technology
    2013
    Abstract
    In the present study the behavior of Ti-Al-C ternary system is investigated during mechanical alloying. The mixture of Ti, Al and C powders was used with initial stoichiometric composition of Ti3AlC2. X-ray diffraction (XRD) was used to characterize the milled powders and a thermodynamic analysis of the process was then carried out using Miedema model. This thermodynamic analysis showed that for all binary Ti-C, Al-C, Ti-Al systems and ternary Ti-Al-C systems, among all compositions, the thermodynamic driving force for intermetallic phase formation is much greater when compared with the formation of solid solutions or amorphous phases. Finally the reactions that are feasible to occur during... 

    Thermodynamic analysis of a novel combined power and refrigeration cycle comprising of EKalina and ejector refrigeration cycles

    , Article International Journal of Refrigeration ; Volume 104 , 2019 , Pages 291-301 ; 01407007 (ISSN) Behnam, P ; Faegh, M ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A novel combined power and refrigeration cycle is introduced and analyzed from the thermodynamic standpoint. The proposed cycle is an integration of a Kalina cycle equipped with an ejector (EKalina) and an ejector refrigeration cycle (ERC). In order to enhance the overall cycle performance, the possibility of employing two-phase ejectors in combined power and refrigeration cycles is studied. A parametric analysis is conducted to investigate the effects of the key thermodynamic parameters namely turbine inlet pressure, split ratio, basic ammonia concentration, heat source and evaporator temperatures on the cycle performance. The developed model is also verified with available data and it is... 

    Thermally conductive rubber-based composite friction materials for railroad brakes - Thermal conduction characteristics

    , Article Composites Science and Technology ; Volume 67, Issue 13 , 2007 , Pages 2665-2674 ; 02663538 (ISSN) Shojaei, A ; Fahimian, M ; Derakhshandeh, B ; Sharif University of Technology
    2007
    Abstract
    This study deals with the thermal conductivity of rubber-based composite friction materials used in railroad vehicles. Based on a commercially available railroad friction material, called here base material (BM), various friction materials containing different thermally conductive fillers (Cu, brass, Al, Al2O3 and talc) are fabricated and then their thermal conductivities are measured at various contents of the fillers. Addition of the thermally conductive fillers causes an increase in thermal conductivity of the friction material from 0.48 up to 5.8 W/m K, depending on the type and content of the filler. In addition, the experimental results reveal that the thermal conductivity of the... 

    The impact of morphology on thermal properties and aerobic biodegradation of physically compatibilized poly (lactic acid)/co-plasticized thermoplastic starch blends

    , Article Polymers for Advanced Technologies ; Volume 29, Issue 12 , 2018 , Pages 2880-2889 ; 10427147 (ISSN) Esmaeili, M ; Pircheraghi, G ; Bagheri, R ; Altstädt, V ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    Recently, the use of biodegradable polymers became the applicable solution to reduce the environmental concerns, which are created by plastic wastes as well as restrictions of petroleum-based synthetic polymers. By this point of view, polylactic acid (PLA) as a biodegradable and bio-based polymer is resolving both aforementioned issues. While, the high cost of PLA and its slow biodegradation rate make researchers to blend it with a faster one, for instance, thermoplastic starch (TPS). Adding TPS into PLA can influence on the morphological structure, thermal stability, and biodegradability. In this study, the well-tuned co-plasticized TPS via sorbitol/glycerol mixture was melt mixed with PLA... 

    The effect of mechanical and thermal properties of FRP bars on their tensile performance under elevated temperatures

    , Article Construction and Building Materials ; Volume 157 , 2017 , Pages 1001-1010 ; 09500618 (ISSN) Ashrafi, H ; Bazli, M ; Najafabadi, E. P ; Vatani Oskouei, A ; Sharif University of Technology
    Abstract
    In this experimental study the effect of physical and thermal properties of various FRP bars on their performance under elevated temperatures are investigated. The parameters included the bars' diameter, type of fiber, type of resin, fiber to matrix ratio, and thermal properties were studied. Moreover, ANOVA (ANalysis Of VAriance) was performed in order to investigate the contribution of each variable on the obtained results. The results showed that in addition to the temperature, the bars' diameter, type of fiber, type of resin, and thermal properties (Tg and Td) of the FRP bars have contributions to the results, while the fiber to matrix ratio was found to be an ineffective factor. It was... 

    The effect of inlet turbulence intensity on nano-particulate soot formation in Kerosene-fueled combustors

    , Article ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2016, 4 January 2016 through 6 January 2016 ; Volume 2 , 2016 ; 9780791849668 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Heat Transfer Division ; Sharif University of Technology
    American Society of Mechanical Engineers  2016
    Abstract
    In this work, we numerically study the effects of turbulence intensity at the fuel and oxidizer stream inlets on the soot aerosol nano-particles formation in a kerosene fuel-based combustor. In this regard, we study the turbulence intensity effects specifically on the thermal performance and nanoparticulate soot aerosol emissions. To construct our computer model, we simulate the soot formation and oxidation using the Polycyclic Aromatic Hydrocarbons PAHs-inception and the hydroxyl concept, respectively. Additionally, the soot nucleation process is described using the phenyl route, in which the soot inception is described based on the formations of tworinged and three-ringed aromatics from... 

    Synthesis and thermal behavior of Mg-doped calcium phosphate nanopowders via the sol gel method

    , Article Scientia Iranica ; Volume 18, Issue 6 , 2011 , Pages 1614-1622 ; 10263098 (ISSN) Gozalian, A ; Behnamghader, A ; Daliri, M ; Moshkforoush, A ; Sharif University of Technology
    Abstract
    The aim of this study was to investigate the thermal behavior of Mg-doped calcium phosphate compounds. Nanocrystalline HA and β-TCP mixtures containing different magnesium contents were synthesized via an alkoxide sol gel method. The ratio of (Ca+Mg)P was kept constant at 1.67, and the Mg content ranged between 0 and 3 mol%. The influence of magnesium on the phase composition, chemical structure, thermal behavior and morphological characteristics of nanopowders was analyzed using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Simultaneous Thermogravimetry and Differential Thermal Analysis (STA/DTA), Scanning Electron Microscopy (SEM) and Transmission Electron...