Loading...
Search for: thermodynamic-properties
0.012 seconds
Total 79 records

    Prediction of asphaltene precipitation during solvent/CO2 injection conditions: A comparative study on thermodynamic micellization model with a different characterization approach and solid model

    , Article Journal of Canadian Petroleum Technology ; Vol. 50, issue. 3 , March , 2011 , p. 65-74 Tavakkoli, M ; Masihi, M ; Ghazanfari, M. H ; Kharrat, R ; Sharif University of Technology
    Abstract
    There are different thermodynamic models that have been applied for modelling of asphaltene precipitation caused by various reasons, such as solvent/CO2 injection and pressure depletion. In this work, two computer codes based on two different asphaltene precipitation thermodynamic models-the first being the thermodynamic micellization model with a different characterization approach and the second being the solid model-have been developed and used for predicting asphaltene precipitation data reported in the literature as well as in the obtained data for Sarvak reservoir crude, which is one of the most potentially problematic Iranian heavy oil reserves under gas injection conditions. For the... 

    Property investigation of polypropylene/multiwall carbon nanotube nanocomposites prepared via in situ polymerization

    , Article Polymer International ; Vol. 63, issue. 4 , April , 2014 , pp. 689-694 ; ISSN: 09598103 Jafariesfad, N ; Ramazani, S. A ; Azinfar, B ; Sharif University of Technology
    Abstract
    In this study, polypropylene/carbon nanotube nanocomposites were prepared via in situ polymerization using a bi-supported Ziegler-Natta catalytic system. In this system, magnesium ethoxide and multiwall carbon nanotubes (MWCNTs) are jointly used as catalyst supports. SEM images reveal the distribution and quite good dispersion of MWCNTs throughout the polypropylene (PP) matrix. The thermal properties of the samples were examined using DSC and TGA tests. The results show that the crystallization temperature of the nanocomposites significantly increases while the melting point is not markedly affected. In addition, the thermal stability is improved. The melt rheological properties of PP/MWCNT... 

    Use of atomistic phonon dispersion and boltzmann transport formalism to study the thermal conductivity of narrow Si nanowires

    , Article Journal of Electronic Materials ; Volume 43, Issue 6 , 2014 , Pages 1829-1836 ; ISSN: 03615235 Karamitaheri, H ; Neophytou, N ; Kosina, H ; Sharif University of Technology
    Abstract
    We study the thermal properties of ultra-narrow silicon nanowires (NW) with diameters from 3 nm to 12 nm. We use the modified valence-force-field method for computation of phononic dispersion and the Boltzmann transport equation for calculation of phonon transport. Phonon dispersion in ultra-narrow 1D structures differs from dispersion in the bulk and dispersion in thicker NWs, which leads to different thermal properties. We show that as the diameter of the NW is reduced the density of long-wavelength phonons per cross section area increases, which increases their relative importance in carrying heat compared with the rest of the phonon spectrum. This effect, together with the fact that... 

    SAFT model for upstream asphaltene applications

    , Article Fluid Phase Equilibria ; Volume 359 , December , 2013 , Pages 2-16 ; 03783812 (ISSN) Panuganti, S. R ; Tavakkoli, M ; Vargas, F. M ; Gonzalez, D. L ; Chapman, W. G ; Sharif University of Technology
    2013
    Abstract
    The increasing incidence of flow assurance problems caused by asphaltene deposition during oil production has motivated the development of numerous theoretical models and experimental methods to analyze this complex phenomenon. Even more challenging are the prediction of the occurrence and the magnitude of asphaltene deposition. It is well accepted that precipitation of asphaltene is a necessary condition for deposition. Hence, a significant amount of work has been devoted to the understanding of the conditions at which asphaltene precipitate from the crude oil. Although, several models seem to work well for correlating available data of onsets of asphaltene precipitation, they usually lack... 

    Mixed pressure and AC electroosmotically driven flow with asymmetric wall zeta potential and hydrophobic surfaces

    , Article ASME 2013 Heat Transfer Summer Conf. Collocated with the ASME 2013 7th Int. Conf. on Energy Sustainability and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, HT 2013 ; Volume 1 , 2013 ; 9780791855478 (ISBN) Lesani, M ; Sharif University of Technology
    2013
    Abstract
    The present study examines Alternating Current (AC) electroosmotic flows in a parallel plate microchannel subject to constant wall temperature. Numerical method consists of a central finite difference scheme for spatial terms and a forward difference scheme for the temporal term. Asymmetric boundary conditions are assumed for Poison-Boltzmann equation for determining the electric double layer (EDL) potential distribution. The potential distribution is then used to evaluate the velocity distribution. The velocity distribution is obtained by applying slip boundary conditions on the walls which accounts for probable hydrophobicity of surfaces. After determining the velocity distribution... 

    Simulation of multiphase flows in porous media with gravitational effects using dominant wave method

    , Article International Journal of Numerical Methods for Heat and Fluid Flow ; Volume 23, Issue 7 , 2013 , Pages 1204-1224 ; 09615539 (ISSN) Moshiri, M ; Manzari, M. T ; Hannani, S. K ; Rasouli, A ; Sharif University of Technology
    2013
    Abstract
    Purpose - In this paper, the flow of multiphase fluids in a one-dimensional homogeneous porous media involving the gravity effects is numerically studied using the dominant wave method. The paper aims to discuss these issues. Design/methodology/approach - The numerical scheme used for solving the pressure equations, obtained for the black-oil model, is a backward Euler scheme while the hyperbolic mass conservation equations, derived for both black-oil and Buckley-Leverett models, are solved using the dominant wave method. Higher-order schemes are achieved using either variable derivatives along with the minmod limiter or a MUSCL type interface construction scheme using the Fromm's limiter.... 

    Multi objective optimization of solid oxide fuel cell stacks considering parameter effects: Fuel utilization and hydrogen cost

    , Article Journal of Renewable and Sustainable Energy ; Volume 5, Issue 5 , 2013 ; 19417012 (ISSN) Behzadi Forough, A ; Roshandel, R ; Sharif University of Technology
    2013
    Abstract
    In the context of stationary power generation, fuel cell based systems are being predicted as a valuable option to tabernacle the thermodynamic cycle based power plants. In this paper, multi objective optimization approach is used to optimize the planer solid oxide fuel cell (SOFC) stacks performance using genetic algorithm technique. Multi objective optimization generates the most attractive operating conditions of a SOFC system. This allows performing the optimization of the system regarding to two different objectives. Two pairs of different objectives are considered in this paper as distinguished strategies. In the first strategy, minimization of the breakeven per-unit energy cost... 

    Thermodynamic modeling of partially stratified charge engine characteristics for hydrogen-methane blends at ultra-lean conditions

    , Article International Journal of Hydrogen Energy ; Volume 38, Issue 25 , August , 2013 , Pages 10640-10647 ; 03603199 (ISSN) Aliramezani, M ; Chitsaz, I ; Mozafari, A. A ; Sharif University of Technology
    2013
    Abstract
    A thermodynamic model considering flame propagation is presented to predict SI engine characteristics for hydrogen-methane blends. The partially charge stratification approach which involves micro direct injection of pure fuel or a fuel-air mixture, to create a rich zone near the spark plug, is proposed as a method to improve engine performance. Presented approach was validated with experimental data for the natural gas at lean condition. The model was generalized to predict the performance of engine for a variety of hydrogen contents in hydrogen-methane blends. Hydrogen molar concentrations of 0%, 15%, 30%, and 45% were used in the simulations. Results showed that partially charge... 

    Thermodynamic analysis of Ti-Al-C intermetallics formation by mechanical alloying

    , Article Journal of Alloys and Compounds ; Volume 576 , 2013 , Pages 317-323 ; 09258388 (ISSN) Sadeghi, E ; Karimzadeh, F ; Abbasi, M. H ; Sharif University of Technology
    2013
    Abstract
    In the present study the behavior of Ti-Al-C ternary system is investigated during mechanical alloying. The mixture of Ti, Al and C powders was used with initial stoichiometric composition of Ti3AlC2. X-ray diffraction (XRD) was used to characterize the milled powders and a thermodynamic analysis of the process was then carried out using Miedema model. This thermodynamic analysis showed that for all binary Ti-C, Al-C, Ti-Al systems and ternary Ti-Al-C systems, among all compositions, the thermodynamic driving force for intermetallic phase formation is much greater when compared with the formation of solid solutions or amorphous phases. Finally the reactions that are feasible to occur during... 

    Effect of synthesis method on magnetic and thermal properties of polyvinylidene fluoride/Fe3O4 nanocomposites

    , Article Journal of Reinforced Plastics and Composites ; Volume 32, Issue 14 , 2013 , Pages 1044-1051 ; 07316844 (ISSN) Frounchi, M ; Hadi, M ; Sharif University of Technology
    2013
    Abstract
    Polyvinylidene fluoride magnetic nanocomposite films were prepared by solution casting using two types of magnetic nanoparticles: (a) magnetic nanoparticles synthesized by co-precipitation method using oleic acid as a coating agent and (b) Fe3O4 nanoparticles prepared by hydrolysis method without using a coating agent. Dynamic light scattering measurements showed mean diameters of 135 and 46 nm in co-precipitation and hydrolysis methods, respectively. Scanning electron microscopy showed that the magnetic nanoparticles were uniformly dispersed inside the polymer matrix. X-ray diffraction confirmed that Fe3O4 nanoparticles induced nucleation of β- crystalline phase in the matrix polymer. The... 

    Atomistic study of the lattice thermal conductivity of rough graphene nanoribbons

    , Article IEEE Transactions on Electron Devices ; Volume 60, Issue 7 , 2013 , Pages 2142-2147 ; 00189383 (ISSN) Karamitaheri, H ; Pourfath, M ; Faez, R ; Kosina, H ; Sharif University of Technology
    2013
    Abstract
    Following our recent study on the electronic properties of rough nanoribbons , in this paper the role of geometrical and roughness parameters on the thermal properties of armchair graphene nanoribbons is studied. Employing a fourth nearest-neighbor force constant model in conjuction with the nonequilibrium Green's function method the effect of line-edge-roughness on the lattice thermal conductivity of rough nanoribbons is investigated. The results show that a reduction of about three orders of magnitude of the thermal conductivity can occur for ribbons narrower than 10 nm. The results indicate that the diffusive thermal conductivity and the effective mean free path are directly proportional... 

    Effects of cylindrical and sheet types of nanoparticles on thermal properties and chain folding free energy of poly(ethylene terephthalate)

    , Article Journal of Reinforced Plastics and Composites ; Volume 32, Issue 11 , 2013 , Pages 846-859 ; 07316844 (ISSN) Goodarzi, V ; Shadakhtar, A ; Sirousazar, M ; Mortazavi, M ; Ghaniyari Benis, S ; Sharif University of Technology
    2013
    Abstract
    Poly(ethylene terephthalate) (PET) nanocomposites were prepared through a solution casting method using Multi wall carbon nanotubes (MWCNT) and organically modified montmorillonite (OMMT) as nanoparticles and their morphological and thermal properties investigated. The X-ray diffraction and transmission electron microscopy measurements showed that decreasing the ratio of MWCNT to OMMT for the same amount of OMMT creates better conditions for intercalation of PET macromolecules and promotes the transformation of OMMT nanostructures from the intercalated to exfoliated state. It was concluded that the Ozawa's model was not suitable to interpret the crystallization behavior of the... 

    Analysis of transient heat conduction in a hollow cylinder using Duhamel theorem

    , Article International Journal of Thermophysics ; Volume 34, Issue 2 , 2013 , Pages 350-365 ; 0195928X (ISSN) Fazeli, H ; Abdous, M. A ; Karabi, H ; Moallemi, N ; Esmaeili, M ; Sharif University of Technology
    2013
    Abstract
    The objective of this paper is to derive the mathematical model of two-dimensional heat conduction at the inner and outer surfaces of a hollow cylinder which are subjected to a time-dependent periodic boundary condition. The substance is assumed to be homogenous and isotropic with time-independent thermal properties. Duhamel's theorem is used to solve the problem for the periodic boundary condition which is decomposed by Fourier series. In this paper, the effects of the temperature oscillation frequency on the boundaries, the variation of the hollow cylinder thickness, the length of the cylinder, the thermophysical properties at ambient conditions, and the cylinder involved in some... 

    Thermoeconomic approach for optimal design of gas turbine heat recovery steam generator

    , Article Proceedings of the 26th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2013 ; July , 2013 Hanafizadeh, P ; Parhizgar, T ; Ghorbanian, K ; Sharif University of Technology
    China International Conference Center for Science and Technology  2013
    Abstract
    In the present study a comprehensive thermoeconomic modelling of a heat recovery steam generator (HRSG) for a typical 4MW class gas turbine is performed. Usually, the thermoeconomic analyses involve a thermodynamic model of the HRSG and an economic model dedicated to assess the cost. In this study, different configurations of single and dual pressure level HRSGs are optimized and afterward compared to find the economical design. For these configurations thermodynamic model calculates the performance and the energy balance of systems at the optimal operating conditions which are derived from optimization model, and economic model estimates total cost per unit of produced energy. Finally,... 

    Performance and exhaust emission characteristics of a spark ignition engine operated with gasoline and CNG blend

    , Article Proceedings of the Spring Technical Conference of the ASME Internal Combustion Engine Division ; 2012 , Pages 179-187 ; 15296598 (ISSN) ; 9780791844663 (ISBN) Dashti, M ; Hamidi, A. A ; Mozafari, A. A ; Sharif University of Technology
    2012
    Abstract
    Using CNG as an additive for gasoline is a proper choice due to higher octane number of CNG enriched gasoline with respect to that of gasoline. As a result, it is possible to use gasoline with lower octane number in the engine. This would also mean the increase of compression ratio in SI engines resulting in higher performance and lower gasoline consumption. Over the years, the use of simulation codes to model the thermodynamic cycle of an internal combustion engine have developed tools for more efficient engine designs and fuel combustion. In this study, a thermodynamic cycle simulation of a conventional four-stroke spark-ignition engine has been developed. The model is used to study the... 

    Sensitivity analysis of gas turbine fuel consumption with respect to turbine stage efficiency

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 1 , 2012 , Pages 419-423 ; 9780791845172 (ISBN) Zeinalpour, M ; Mazaheri, K ; Irannejad, A ; Sharif University of Technology
    2012
    Abstract
    In this paper, the effect of turbine stage efficiency on fuel consumption of both gas turbines and aerial engines is assessed quantitatively. At the beginning of the gas generator optimization to decrease the fuel consumption, it is necessary to analyze the sensitivity of fuel consumption to its main components efficiencies. This will guide us which component is more important to be optimized. Here a zero-dimensional analysis has been done to determine the effect of turbine stage efficiency on the fuel consumption. Results of this analysis are evaluated in the context of thermodynamic cycle of a gas turbine generator and an aerial engine. As an example, it is shown that if the efficiency of... 

    Estimation of biodiesel physical properties using local composition based models

    , Article Industrial and Engineering Chemistry Research ; Volume 51, Issue 41 , September , 2012 , Pages 13518-13526 ; 08885885 (ISSN) Abedini Najafabadi, H ; Pazuki, G ; Vossoughi, M ; Sharif University of Technology
    2012
    Abstract
    In this study, the local composition based models such as the Wilson, the nonrandom two-liquid (NRTL), and the Wilson-NRF have been applied in correlation and estimation of density, viscosity, and surface tension of biodiesels. The thermodynamic models have been used in correlating the thermophysical properties for 215 experimental data points. These models have the interaction energy between each pair that is considered as adjustable parameters. To decrease the number of these adjustable parameters, it is assumed that the biodiesels are composed of two hypothetical components. The average absolute deviation (AADs) of the correlated density of biodiesels for the Wilson, the NRTL, and the... 

    Thermodynamic properties of aqueous salt containing urea solutions

    , Article Fluid Phase Equilibria ; Volume 325 , July , 2012 , Pages 71-79 ; 03783812 (ISSN) Sadeghi, M ; Held, C ; Samieenasab, A ; Ghotbi, C ; Abdekhodaie, M. J ; Taghikhani, V ; Sadowski, G ; Sharif University of Technology
    2012
    Abstract
    Urea and inorganic ions are present in some of the physiological systems, e.g. urine. Understanding the interactions in urea/salt/water is a preliminary step to shed light on more complicated behavior of multi-component physiological systems. State-of-the-art models as well as thermophysical properties can be applied to understand the interactions in these systems. In order to determine such interactions densities, mean ionic activity coefficients (MIACs), osmotic coefficients, and solubility were measured in aqueous solutions of urea and different salts. Densities were determined at temperatures 293.15, 303.15, and 313.15K for urea concentrations up to 3molal and up to 1molal for NaCl.... 

    Experimental and computational bridgehead C-H bond dissociation enthalpies

    , Article Journal of Organic Chemistry ; Volume 77, Issue 4 , January , 2012 , Pages 1909-1914 ; 00223263 (ISSN) Fattahi, A ; Lis, L ; Tehrani, Z. A ; Marimanikkuppam, S. S ; Kass, S. R ; Sharif University of Technology
    Abstract
    Bridgehead C-H bond dissociation enthalpies of 105.7 ± 2.0, 102.9 ± 1.7, and 102.4 ± 1.9 kcal mol -1 for bicyclo[2.2.1]heptane, bicyclo[2.2.2]octane, and adamantane, respectively, were determined in the gas phase by making use of a thermodynamic cycle (i.e., BDE(R-H) = ΔH° acid(H-X) - IE(H •) + EA(X •)). These results are in good accord with high-level G3 theory calculations, and the experimental values along with G3 predictions for bicyclo[1.1.1]pentane, bicyclo[2.1.1]hexane, bicyclo[3.1.1]heptane, and bicyclo[4.2.1]nonane were found to correlate with the flexibility of the ring system. Rare examples of alkyl anions in the gas phase are also provided  

    Synthesis and characterization of Ce-TZP/Al 2O 3 nanocomposites prepared via aqueous combustion

    , Article Journal of Alloys and Compounds ; Volume 514 , February , 2012 , Pages 150-156 ; 09258388 (ISSN) Asadirad, M ; Yoozbashizadeh, H ; Sharif University of Technology
    2012
    Abstract
    Nanocomposites of Ce-TZP/Al 2O 3 were synthesized by aqueous combustion, and urea, ammonium acetate and glycine were used as mixtures of fuels with the corresponding metal nitrates. Thermodynamic modeling was conducted to anticipate the effect of the alumina content on the exothermicity of the combustion procedure. The thermodynamic properties of the combustion reaction indicated that as the alumina content increased, the amount of gases produced during the reaction increased with a decrease in the adiabatic temperature. Furthermore, to reduce the particle size of the powders, a series of combustion reactions were performed to optimize the fuel composition and alumina content. Ce 0.1Zr 0.9O...