Loading...
Search for: numerical-simulation
0.01 seconds
Total 363 records

    Theoretical and Experimental Simulation of Hepatic Cells and their Functionalities On-a-chip

    , Ph.D. Dissertation Sharif University of Technology Sharifi, Fatemeh (Author) ; Firoozabadi, Bahar (Supervisor) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    Liver is the largest internal organ of the human body which serves many vital functionalities. Recently, liver-on-a-chip systems have been used to model some of the vital liver specific-functions and to investigate its related diseases. The purpose of the present study was simulation of some of these liver specific functionalities on-a-chip and using the obtained results in predicting hepatocellular functionalities i.e. production of some metabolites and modeling some of the liver-related diseases which have been done numerically and experimentally. Numerical simulations have been developed in two-dimensional and three-dimensional forms. In the 2D simulation, the governing equations i.e.... 

    Investigation of the Influence of Nanoparticle & Nanofluidic Conduit Geometry on Ionic Transport

    , M.Sc. Thesis Sharif University of Technology Bakouei, Mostafa (Author) ; Taghipoor, Mojtaba (Supervisor)
    Abstract
    Resistive pulse sensing (RPS) has proved to be a viable method for detection and characterization of micro and nano particles. This method works based on ionic current variation inside nanopores. Modern fabrication methods have introduced different nanopore geometries for resistive pulse sensors therefore studing the effects of geometry on sensing performance of nanaopores is important. Numerical simulation has been used to study a wide variation of nanopore’s geometry configurations and study the physics behind this phenomena. Based on the results, numerical simulation could be used as a fast and easy tool for size determination for nanopore. To compare the sensing performance of different... 

    Effect of Geometric Distortion on the Flow Field and Performance of an Axisymmetric Supersonic Inlet

    , M.Sc. Thesis Sharif University of Technology Akbarzadeh, Hossein (Author) ; Farahani, Mohammad (Supervisor)
    Abstract
    Inlets must decelerate the air with lowest loss and drag together with a given pressure and Mach number with best quality and uniformity to the engine. This is done based on flight Mach number, by an arrangement of shock waves and surfaces gradient in the inlet. Any distortion in the flow field and the inlet geometry parameters may disrupt such arrangement and influence on the inlet performance, in addition, under critical conditions, it might affect the stability of the intakes. Any distortion in the flow field and the inlet geometry parameters may disrupt such arrangement and influence on the inlet performance, in addition, under critical conditions, it might affect the stability of the... 

    Numerical Simulation of Organ on Chip Systems

    , M.Sc. Thesis Sharif University of Technology Mehrdel, Pouya (Author) ; Saeedi, Mohammad Saeed (Supervisor) ; Sani, Mehdi ($item.subfieldsMap.e)
    Abstract
    Discovering new medicines and generally medical researches, are time consuming and expensive. But recent achievements in cell culturing methods and micro and nano-engineering techniques have enabled the researchers to investigate new medicines in a lesser time and price. Huh et al. successfully fabricated the lung on chip device. This device is consisted of three chambers. The middle chamber is separated in two equal parts and side chambers were considered in order to apply normal breathing. Periodic deformation was needed to apply the natural condition of cultured cells by expansion and contraction. Numerical simulation was needed to investigate the properties of flow in this kind of... 

    Hydrodynamic Simulation and Flow Pattern Analysis of Shark Undulation Motions

    , Ph.D. Dissertation Sharif University of Technology Ebrahimi Chamkakaei, Mohsen (Author) ; Abbaspour Tehrani Fard, Majid (Supervisor)
    Abstract
    Many species in nature exist which human can reach the aims of flying and swimming by inspiring from them. Observations show that fish can use their especial undulating motions of body/fins to crusing, increase performance, suddenly acceleration, and maneuvering. To design a robot fish and benefit the characteristics and abilities of a live fish, using its real geometry and kinematics in the robot is vital. Therefore, simulations are essential to better exploiting the fish behavior, which can obtain useful consequences by using computational fluid dynamics. In this thesis, first the kinematics of sharks is investigated. Then, investigations are accomplished by utilizing an unsteady finite... 

    Design and Analysis of an Optimal Cooling System for a Supersonic Exhaust Diffuser Using a Water Jacket

    , M.Sc. Thesis Sharif University of Technology Mahdian Dowlatabadi, Milad (Author) ; Farahani, Mohammad (Supervisor) ; Fouladi, Nematollah (Supervisor)
    Abstract
    Often in a vacuum test facility, a supersonic exhaust diffuser uses the energy of the outflow from the nozzle to create and maintain a vacuum condition in the engine test chamber. In this system, the temperature of the motor exhaust gas, which directly hits the diffuser walls, is much higher than the tolerance of the metal body of the diffuser. The purpose of this research is to design a cooling system for thermal protection of diffuser walls of a vacuum simulator using a water-jacket tool. At the beginning of this study, the effective parameters in the design of the water-jacket cooling system were identified. Then, a new algorithm to design and optimize the water-jacket cooling system was... 

    Numerical Modeling of Solid Transport in a Transparent Fracture

    , M.Sc. Thesis Sharif University of Technology Shad, Ehsan (Author) ; Shad, Saeed (Supervisor) ; Zivar, Davood (Co-Supervisor)
    Abstract
    Hydraulic fracturing, as an industry-leading technology, has proven to be very efficient in increasing the productivity of oil and gas wells. Therefore, this technology has been taken into attention in recent years and the number of hydraulic fracturing operations has been increasing. In order to enhance the efficiency of this technology, the final transmissibility of the fracture needs to be at the maximum possible value. To do so, proppant injection is the most common way to maintain a fracture open. To achieve a successful hydraulic fracture operation, detailed knowledge of the particle's transport and distribution inside the fracture is needed.In this study, a static fracture geometry... 

    Aerodynamic Design and Numerical Simulation of Morphing Flap for a Slotted Airfoil

    , M.Sc. Thesis Sharif University of Technology Shahrokhi, Siavash (Author) ; Taeibi Rahni, Mohamad (Supervisor)
    Abstract
    The purpose of this study is design and simulation of morphing flap for a slotted airfoil to reduce drag and increase lift. Increasing lift results in a smaller flap for the same lift, resulting in less weight and less drag. Drag reduction due to morphing nature causes growth in aerodynamic efficiency. In this work, a flap designed for 0.2 and 4,700,000 Mach and Reynold numbers, respectively. Our simulation was performed using ANSYS FLUENT flow solver and POINTWISE for grid generation. Here, morphing has been applied by changing the flap mean camber line and slots, so that they have minimum interferences with the flow. For this purpose, the flap mean camber line was discretized and various... 

    Experimental and Numerical Investigation the Effect of Geometry on Hydrodynamic Performance in Surface Piercing Propeller

    , Ph.D. Dissertation Sharif University of Technology Teimouri Rabor, Mahdi (Author) ; Seif, Mohammad Saeed (Supervisor)
    Abstract
    Due to the suitable performance characteristics and the widespread use of Surface Piercing Propellers (SPPs) in high-speed crafts, many experiments and numerical studies have been conducted in this field. Due to the lack of a comprehensive series similar to conventional propellers in the field of SPPs, in this thesis, it has been tried to personalize the suitable basis by conducting two separate experimental tests in the National Iranian Maritime Laboratory (NIMALA) towing tank and the cavitation tunnel at Sharif University using computational fluid dynamics method and the commercial code STAR-CCM+. For this purpose, a wide range of phenomena and effective parameters on hydrodynamic... 

    Modeling and Optimization of a Solar Thermal Storage for Concentrating Solar Power Plants

    , M.Sc. Thesis Sharif University of Technology Shamsi, Hamid Reza (Author) ; Boroushaki, Mehrdad (Supervisor)
    Abstract
    One of the main components of any solar power plant is the heat storage. Implementing heat storage reduc-es the cost of power generation by increasing the capacity factor of the system. This Thesis aims to analyze the operation of heat storages by modeling latent heat
    storage. In this regard, an efficient method named "Method of Characteristics" is utilized. Models developed based on this method are possible to be used for comparison, sensitivity analysis, and optimization due to their low computation time. Sensitivity analysis was carried out based on various parameters such as void fraction, fiUer material size. Results show that using latent heat storage, storage c-apacity is... 

    Numerical Analysis and Optimization of A Vortex Tube with Differential Evolution Algorithm

    , M.Sc. Thesis Sharif University of Technology Khazaali, Sadegh Khazaali (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    The vortex tube is a simple device that injects compressed gas (air) tangentially into the vortex chamber through one or more injection nozzles. After entering, the flow becomes rotational and an axial cold flow goes towards the cold outlet and a peripheral hot flow goes towards the hot outlet. Besides all the different applications of the vortex tube, the main application of this device is cooling. Here, the goal is to optimize the geometry and physical conditions to improve the performance, which is done by using a commercial software and numerical analysis of a vortex tube to understand the flow physics and optimization. In this research, we use experimental and numerical data for... 

    Simulated and experimental investigation of stretch sheet forming of commercial AA1200 aluminum alloy

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Vol. 24, issue. 2 , February , 2014 , pp. 484-490 Esmaeilizadeh, R ; Khalili, K ; Mohammadsadeghi, B ; Arabi, H ; Sharif University of Technology
    Abstract
    The simulation and experimental results obtained from stretching test of a commercial sheet of AA1200 aluminum alloy were compared and evaluated. Uniaxial tensile tests were carried out to obtain the required input parameters for simulation. Finite element analysis of the forming process was carried out using Abaqus/Explicit by considering von Mises and Hill-1948 yield criteria. Simulation results including punch force and strain distribution were compared and validated with the experimental results. The results reveal that using anisotropic yield criteria for simulation has a better match in both cases with the experiments  

    Analysis of Capillary-Viscous-Gravity Forces in Biopolymer Flooding with a Sensitivity Analysis on Polymer and Porous Medium Parameters

    , Article Journal of Dispersion Science and Technology ; Vol. 35, issue. 12 , Aug , 2014 , p. 1764-1773 Hamidpour, E ; Mirzaei-Paiaman, A ; Ramazani, S. A. A ; Hatami, A ; Sharif University of Technology
    Abstract
    Gravity, viscous, and capillary are three main forces affecting flow characteristics in porous media. No analytical solution can be found to model the flow by considering all these forces. In this work, by considering all these forces, the polymer-flooding process is modeled by using a numerical simulation approach. For characterizing the polymer, the modified Blake-Kozeny model is chosen, which benefits consideration of the permeability reduction due to polymer adsorption on the rock surface  

    Thermal performance evaluation of domed roofs

    , Article Energy and Buildings ; Volume 43, Issue 6 , June , 2011 , Pages 1254-1263 ; 03787788 (ISSN) Faghih, A. K ; Bahadori, M. N ; Sharif University of Technology
    2011
    Abstract
    Domed roofs have been used in Iran and many other countries to cover large buildings such as mosques, shrines, churches, schools. They have been also employed in other buildings like bazaars or market places in Iran due to their favorable thermal performance. The aim of this research is to study about domed roofs thermal performance in order to determine how they can be helpful in reducing the maximum air temperature of inside buildings during the warm seasons considering all parameters like air flow around them, solar radiation, radiation heat transfer with the sky and the ground as well as some openings on the building. The results of the study show that the thermal performance of the... 

    Chaos generation via a switching fractional multi-model system

    , Article Nonlinear Analysis: Real World Applications ; Volume 11, Issue 1 , February , 2010 , Pages 332-340 ; 14681218 (ISSN) Tavazoei, M. S ; Haeri, M ; Sharif University of Technology
    2010
    Abstract
    This paper introduces a system with switching multi-model structure which can generate chaos. Sub-models in this structure are fractional-order linear systems with any desired commensurate order less than 1. It shows that this system is capable of demonstrating chaotic behavior if its parameters and switching rule are suitably chosen. The structure of the proposed system is defined in a general form; consequently various chaotic attractors can be created by this system with different choices of order, parameters and switching rule. Numerical simulations illustrate behavior of the introduced system in some different situations  

    Numerical investigation of wall curvature effects on heat transfer and film cooling effectiveness

    , Article Heat Transfer Research ; Volume 47, Issue 6 , 2016 , Pages 559-574 ; 10642285 (ISSN) Shalchi Tabrizi, A ; Taiebi Rahni, M ; Xie, G ; Asadi, M ; Sharif University of Technology
    Begell House Inc  2016
    Abstract
    In this research, the problems of adiabatic film-cooling the flat, convex, and concave surfaces are investigated numerically. Two different radii of curvature and one row of vertical injection holes are considered. The Navier-Stokes equations are solved using a fine nonuniform multiblock staggered curvilinear grid and the SIMPLE-based finite volume method. The blowing rates are 0.5 and 1.0 and the mainstream Reynolds number is 10,000. The obtained results indicated that at a low blowing ratio, the cooling effectiveness enhances over the convex surface and reduces over the concave surface compared to the flat surface case. In comparison with the low blowing ratio, the curvature effects at a... 

    Design and parameter study of integrated microfluidic platform for CTC isolation and enquiry; a numerical approach

    , Article Biosensors ; Volume 8, Issue 2 , 18 June , 2018 ; 20796374 (ISSN) Shamloo, A ; Ahmad, S ; Momeni, M ; Sharif University of Technology
    2018
    Abstract
    Being the second cause of mortality across the globe, there is now a persistent effort to establish new cancer medication and therapies. Any accomplishment in treating cancers entails the existence of accurate identification systems empowering the early diagnosis. Recent studies indicate CTCs’ potential in cancer prognosis as well as therapy monitoring. The chief shortcoming with CTCs is that they are exceedingly rare cells in their clinically relevant concentration. Here, we simulated a microfluidic construct devised for immunomagnetic separation of the particles of interest from the background cells. This separation unit is integrated with a mixer subunit. The mixer is envisioned for... 

    Robust stability of impulsive synchronization in hyperchaotic systems

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 14, Issue 3 , 2009 , Pages 880-891 ; 10075704 (ISSN) Haeri, M ; Dehghani, M ; Sharif University of Technology
    2009
    Abstract
    In this paper the impulsive synchronization of general continuous chaotic and hyperchaotic systems is investigated. The robust stability of the synchronization method is examined in the presence of uncertainties both on linear and nonlinear parts of the system dynamics and the channel noise. Conditions on the impulse distances are derived for different cases. Numerical simulations are presented to show the effectiveness of the method. © 2007 Elsevier B.V. All rights reserved  

    Fractional controller to stabilize fixed points of uncertain chaotic systems: Theoretical and experimental study

    , Article Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering ; Volume 222, Issue 3 , 2008 , Pages 175-184 ; 09596518 (ISSN) Tavazoei, M. S ; Haeri, M ; Jafari, S ; Sharif University of Technology
    2008
    Abstract
    This paper proposes a fractional order controller to stabilize saddle points of index 2 in a chaotic system. The proposed controller has a simple structure and can be tuned to stabilize fixed points when unstructured norm bounded perturbations exist on the model of the chaotic system. Numerical simulations confirm the ability of the controller to stabilize the fixed points in uncertain chaotic systems. Also, to illustrate the practical capability of the proposed controller, it is experimentally applied to control chaos in a chaotic circuit. © IMechE 2008  

    Computer simulation of fluid motion in a porous bed using a volume of fluid method: Application in heap leaching

    , Article Minerals Engineering ; Volume 19, Issue 10 , 2006 , Pages 1077-1083 ; 08926875 (ISSN) Mousavi, S. M ; Jafari, A ; Yaghmaei, S ; Vossoughi, M ; Sarkomaa, P ; Sharif University of Technology
    2006
    Abstract
    Heap leaching is a process extensively used by the mining industry to recover metals from low-grade ores and large quantities of submarginal material resources. Understanding flow through a packed particle bed is important to enhance the performance of heap leaching with respect to design and operating considerations. Complex fluid behavior in porous media, such as film flow, fragmentation, coalescence of droplets, and rivulet flow with or without meandering, has been widely observed in laboratory experiments. In this study, to provide detailed information of momentum and mass transfer phenomena in a granular bed direct numerical simulations (DNS) were performed. In this case the liquid-gas...