Loading...
Search for: numerical-simulation
0.008 seconds
Total 363 records

    One-dimensional chemotaxis kinetic model

    , Article Nonlinear Differential Equations and Applications ; Volume 18, Issue 2 , 2011 , Pages 139-172 ; 10219722 (ISSN) Sharifi tabar, M ; Sharif University of Technology
    Abstract
    In this paper, we study a variation of the equations of a chemotaxis kinetic model and investigate it in one dimension. In fact, we use fractional diffusion for the chemoattractant in the Othmar-Dunbar-Alt system (Othmer in J Math Biol 26(3):263-298, 1988). This version was exhibited in Calvez in Amer Math Soc, pp 45-62, 2007 for the macroscopic well-known Keller-Segel model in all space dimensions. These two macroscopic and kinetic models are related as mentioned in Bournaveas, Ann Inst H Poincaré Anal Non Linéaire, 26(5):1871-1895, 2009, Chalub, Math Models Methods Appl Sci, 16(7 suppl):1173-1197, 2006, Chalub, Monatsh Math, 142(1-2):123-141, 2004, Chalub, Port Math (NS), 63(2):227-250,... 

    Numerical aerodynamic evaluation and noise investigation of a Bladeless fan

    , Article Journal of Applied Fluid Mechanics ; Volume 8, Issue 1 , January , 2015 , Pages 133-142 ; 17353572 (ISSN) Jafari, M ; Afshin, H ; Farhanieh, B ; Bozorgasareh, H ; Sharif University of Technology
    Isfahan University of Technology  2015
    Abstract
    Bladeless fan is a novel fan type that has no observable impeller, usually used for domestic applications. Numerical investigation of a Bladeless fan via Finite Volume Method was carried out in this study. The fan was placed in center of a 4×2×2m room and 473 Eppler airfoil profile was used as cross section of the fan. Performance and noise level of the fan by solving continuity and momentum equations as well as noise equations of Broadband Noise Source (BNS) and Ffowcs Williams and Hawkings (FW-H) in both steady state and unsteady conditions were studied. Flow increase ratio of the fan was captured. Furthermore, BNS method could find outlet slit of the air as the main source of the noise... 

    Numerical investigation of nozzle geometry effect on turbulent 3-D water offset jet flows

    , Article Journal of Applied Fluid Mechanics ; Volume 9, Issue 4 , 2016 , Pages 2083-2095 ; 17353572 (ISSN) Mohammad Aliha, N ; Afshin, H ; Farahanieh, B ; Sharif University of Technology
    Isfahan University of Technology  2016
    Abstract
    Using the Yang-Shih low Reynolds k-ε turbulence model, the mean flow field of a turbulent offset jet issuing from a long circular pipe was numerically investigated. The experimental results were used to verify the numerical results such as decay rate of streamwise velocity, locus of maximum streamwise velocity, jet half width in the wall normal and lateral directions, and jet velocity profiles. The present study focused attention on the influence of nozzle geometry on the evolution of a 3D incompressible turbulent offset jet. Circular, square-shaped, and rectangular nozzles were considered here. A comparison between the mean flow characteristics of offset jets issuing from circular and... 

    Numerical study of mixed convection heat transfer of various fin arrangements in a horizontal channel

    , Article Engineering Science and Technology, an International Journal ; Volume 20, Issue 3 , 2017 , Pages 1106-1114 ; 22150986 (ISSN) Mokhtari, M ; Barzegar Gerdroodbary, M ; Yeganeh, R ; Fallah, K ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    The mixed convection of a three-dimensional square duct with various arrangements of fins in both laminar and turbulent flow is numerically characterized and studied. This study focuses on the ability of fin arrangements to enhance a heat transfer while flow is incompressible and the fluid is air. In our models, the lower duct wall is defined with a constant heat flux condition while the two side walls and upper wall are insulated. The finite volume method with the SIMPLE (Semi Implicit Method for Pressure Linked Equations) algorithm is used for handling the pressure–velocity coupling. The numerical results are validated with experimental data and show good agreement. The computations... 

    Three-dimensional numerical analysis of corner effect of an excavation supported by ground anchors

    , Article International Journal of Geotechnical Engineering ; 2019 ; 19386362 (ISSN) Ahmadi, A ; Ahmadi, M. M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    This paper presents a case study and numerical simulations of a corner of a deep excavation in Tehran supported by soldier piles and ground anchors. This study focuses on the differences between 2D and 3D numerical modelling in estimating the wall deflection at the corner locations of the excavation. Furthermore, the performance of modelling with Mohr–Coulomb constitutive law was compared with the result of a hardening soil model. The modelling procedure was calibrated against a full-scale instrumented tieback wall at Texas A&M University and the monitoring data of the excavation project. The results indicated that the hardening soil model yields reasonable predictions of wall deflection in... 

    Three-dimensional numerical analysis of corner effect of an excavation supported by ground anchors

    , Article International Journal of Geotechnical Engineering ; 2019 ; 19386362 (ISSN) Ahmadi, A ; Ahmadi, M. M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    This paper presents a case study and numerical simulations of a corner of a deep excavation in Tehran supported by soldier piles and ground anchors. This study focuses on the differences between 2D and 3D numerical modelling in estimating the wall deflection at the corner locations of the excavation. Furthermore, the performance of modelling with Mohr–Coulomb constitutive law was compared with the result of a hardening soil model. The modelling procedure was calibrated against a full-scale instrumented tieback wall at Texas A&M University and the monitoring data of the excavation project. The results indicated that the hardening soil model yields reasonable predictions of wall deflection in... 

    Effects of conventional and severe shot peening on residual stress and fatigue strength of steel AISI 1060 and residual stress relaxation due to fatigue loading: experimental and numerical simulation

    , Article Metals and Materials International ; October , 2020 Maleki, E ; Farrahi, G. H ; Reza Kashyzadeh, K ; Unal, O ; Gugaliano, M ; Bagherifard, S ; Sharif University of Technology
    Korean Institute of Metals and Materials  2020
    Abstract
    Abstract: This study investigates and compares the effects of different shot peening treatments including conventional and severe shot peening on microstructure, mechanical properties, fatigue behavior, and residual stress relaxation of AISI 1060 steel. Shot peening treatments were applied with two Almen intensities of 17 and 21 A and a wide ranges of coverage (100%–1500%). Various microstructural observations were carried out to analyze the evolution of microstructure. Microhardness, residual stress and surface roughness measurements and also axial fatigue test were performed. Moreover, the extent of the residual stress relaxation during cyclic loading was investigated by means of XRD... 

    Effects of non-dimensional parameters on formation and break up of cylindrical droplets

    , Article 2004 ASME Heat Transfer/Fluids Engineering Summer Conference, HT/FED 2004, Charlotte, NC, 11 July 2004 through 15 July 2004 ; Volume 2 B , 2004 , Pages 1339-1342 Taeibi Rahni, M ; Sharafatmand, S ; Sharif University of Technology
    American Society of Mechanical Engineers  2004
    Abstract
    The consistent behavior of non-dimensional parameters on the formation and break up of large cylindrical droplets has been studied by direct numerical simulations (DNS). A one-fluid model with a finite difference method and an advanced front tracking scheme was employed to solve unsteady, incompressible, viscous, immiscible, multi-fluid, twodimensional Navier-Stokes equations. This time dependent study allows investigation of evolution of the droplets in different cases. For moderate values of Atwood number (AT), increasing Eotvos number (Eo) explicitly increases the deformation rate in both phenomena. Otherwise, raising the Ohnesorge number (Oh) basically amplifies the viscous effects.... 

    Numerical modelling of two-phase flow in a geocentrifuge

    , Article Environmental Modelling and Software ; Volume 18, Issue 3 , 2003 , Pages 231-241 ; 13648152 (ISSN) Ataie Ashtiani, B ; Hassanizadeh, S. M ; Oung, O ; Weststrate, F. A ; Bezuijen, A ; Sharif University of Technology
    Elsevier BV  2003
    Abstract
    In this paper, results of DNAPL spreading experiments carried out in a geocentrifuge are analysed. The experiments are performed in the GeoDelft geocentrifuge. The experiments investigate the intrusion of a known amount of PCE into a water-saturated soil sample. They are carried out under 12, 15, and 30g conditions. The objectives of these experiments were to assess the potential of geocentrifuge tests for the study of environmental problems, to investigate the effect of acceleration on the spreading of DNAPL, and to determine whether capillary pressure-saturation (Pc-S) curves of soils measured in a geocentrifuge are applicable under 1g conditions. In the present paper, numerical simulation... 

    Simulation of InGaN-based near-ultraviolet/visible dual-band photodetector

    , Article Optical and Quantum Electronics ; Volume 48, Issue 1 , 2016 , Pages 1-11 ; 03068919 (ISSN) Rasouli, F ; Hemmat, Z ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    In this paper, we report on 2D numerical simulation of spectral response for InGaN dual-band photodetector operating at near ultraviolet and visible wavelengths. The back-to-back p–i–n/n–i–p integrated structure enables independent and simultaneous detection of two bands under back-side illumination. The effect of indium content and absorption layer thickness of the two sub-detectors on external quantum efficiency and optical crosstalk between two sub-detectors have been investigated. The optimum values for indium content and thickness of absorption layer in sub-detectors are determined  

    CFD modeling of natural convection in right-angled triangular enclosures

    , Article International Journal of Heat and Technology ; Volume 34, Issue 3 , 2016 , Pages 503-506 ; 03928764 (ISSN) Mirabedin, S. M ; Sharif University of Technology
    Edizioni ETS  2016
    Abstract
    Two-dimensional numerical simulations have been performed to study natural convection in right-angled triangular enclosures filled with water considering different aspect ratios. Continuity, momentum and energy equations are solved assuming Boussinesq approximation utilizing COMSOL. Effect of Rayleigh number, Ra, on heat transfer rate is investigated by showing Nusselt number, Nu, for a range from 1 × 104 to 1 × 107 . It is shown that increasing aspect ratio of the cavity increases averaged Nusselt number in a cavity heated from below. Finally, a correlation for heat transfer rate is developed considering the effect of aspect ratio using simulation results  

    Natural convection in circular enclosures heated from below for various central angles

    , Article Case Studies in Thermal Engineering ; Volume 8 , 2016 , Pages 322-329 ; 2214157X (ISSN) Mirabedin, S. M ; Farhadi, F ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Two-dimensional numerical simulations have been performed to study natural convection in circular enclosures filled with water considering different central angles. Continuity, momentum and energy equations are solved assuming Boussinesq approximation utilizing COMSOL. Effect of Rayleigh number, Ra, on heat transfer rate is investigated by showing Nusselt number, Nu, for a range from 1×103 to 1×107. It is shown that decreasing central angle of the cavity increases averaged Nusselt number in a cavity heated from below. Finally, a correlation for heat transfer rate is developed considering the effect of the angle between two sides of the cavity and Ra number using simulation results  

    Three-dimensional numerical simulation of a novel electroosmotic micromixer

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 119 , 2017 , Pages 25-33 ; 02552701 (ISSN) Shamloo, A ; Madadelahi, M ; Abdorahimzadeh, S ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Lab-on-a-chip (LOC) systems have been widely used in chemical and medical analyses. In this study, a novel T-shaped electroosmotic micromixer was simulated and the effects of different parameters on the mixing process were examined. These parameters include; inlet angle, number of conducting hurdles, arrangements of the hurdles, geometry of hurdles and chambers, aspect ratios of the channel cross-sectional profile, hurdle radius, and depth. It was found that the inlet angle has a direct influence on mixing index (σ). The effect of various number of hurdles (one, two, three and four hurdles) and their orientations was investigated. Simulations revealed that using two conducting hurdles is the... 

    Numerical Simulation of Cavitation in Rigid Body Motion in Unsteady State

    , M.Sc. Thesis Sharif University of Technology Asnaghi, Abolfazl (Author) ; Seif, Mohammad Saeed (Supervisor)
    Abstract
    In this thesis, cavitating flow over 2D/3D geometries of cavitators and projectile bodies in stationary and moving conditions are simulated using the "Volume of Fluid" (VOF) technique. The main application of VOF model is for simulating free surface flows. In this work, another capability is added to the VOF algorithm to solve for gas phase and by applying analytical-numerical mass transfer models, cavitation phenomenon is simulated. The developed algorithm precisely simulates the geometrical parameters of supercavities such as dimension and shape in a wide range of cavitation numbers. In addition, the flow parameters of supercavity such as drag coefficient, pressure coefficient inside the... 

    Computational Simulation of the Effect of Breathing Particle Mass and Breathing Frequency on a Human Respiratory System

    , M.Sc. Thesis Sharif University of Technology Goodarzi Ardakani, Vahid (Author) ; Tayyebi Rahni, Mohammad (Supervisor)
    Abstract
    Our surrounding environment is full of particles with different sizes. These suspended particles enter our body through respiration process, which of course has some negative effects. Therefore, it is very important to comprehend the mechanisms and the effective parameters on these particles motion and their deposition inside the human airway. This work numerically investigates the effects of particles mass and breathing frequency on the deposition of particles in human respiratory system. To this end, a realistic 3-D model of human respiratory system geometry, including nostrils, vestibule, nasal cavity, human sinuses, nasopharynx, oropharynx, larynx, trachea, and main bronchus has been... 

    An Experimental and Numerical Study on Jet Electrohydrodynamics

    , Ph.D. Dissertation Sharif University of Technology Rajabi, Alireza (Author) ; Morad, Mohammad Reza (Supervisor)
    Abstract
    Liquid jet behavior in an intense electric field is studied experimentally and numerically.Imaging is used in experiments to charactrize jet behavior. Electrospray of ethanol using a simple needle in a wide range of operating conditions is investigated. Liquid meniscus is captured using a high-speed camera and different electrospray modes are described based on involved forces. A new nozzle is invented that broadens the stability margins of the useful cone-jet mode. The physical mechanisms of the new cone-jet is discussed and it is characterized using appropriate dimensionless parameters. A simple jet in presence of a gaseous crossflow and a normal electric field is also studied. The liquid... 

    Numerical Simulation of two Phase Flow Around Gas- Condensate Wells With Compositional Model

    , M.Sc. Thesis Sharif University of Technology Heidary, Hadi (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor) ; Seif, Mohammad Saeid (Supervisor) ; Kazemzade Hannani, Siamak (Supervisor)
    Abstract
    If the reservoir temperature lies between the critical temperature and cricondentherm of the reservoir fluid, the reservoir is classified as a retrograde gas-condensate reservoir. When the pressure is decreased on these mixtures, instead of expanding or vaporizing as might be expected, they vaporize instead of condensing. If the reservoir pressure is above the upper dew-point pressure, the hydrocarbon system exists as a single phase in the reservoir (region 3). As the reservoir pressure declines isothermally during production from the initial pressure to the upper dew-point pressure, the attraction between the molecules of the light and heavy components move further apart. As this occurs,... 

    Numerical Investigation of Using Porous Media Combustion in a Thermophotovoltaic Power Generator

    , M.Sc. Thesis Sharif University of Technology Ghafarzadeh, Mahdi (Author) ; Sadrhosseini, Hani (Supervisor) ; Zohoor, Hassan ($item.subfieldsMap.e)
    Abstract
    One of the new technologies for direct energy conversion at micro scale is micro thermophotovoltaic (micro TPV). The main part of a micro TPV system is micro combustor. The ultimate goal in the design of this part is reaching to a uniform and high temperature profile along the micro combustor wall. One of the ways to reach this goal in the macro scale is the porous media combustion. In the present work, a one dimensional numerical code is developed to investigate the effect of porous media on micro combustor of a micro TPV power generator. To increase the accuracy of the results, a multi-step reaction mechanism and temperature dependent thermophysical properties will be used. The numerical... 

    Evaluation of variable permeability model in simulation of seismic behavior of uniform level and gently sloping sand layers

    , Article Earth Sciences Research Journal ; Volume 24, Issue 3 , 2020 , Pages 328-336 Ghassemi, A ; Seyfi, S ; Shahir, H ; Sharif University of Technology
    Universidad Nacional de Colombia  2020
    Abstract
    In this study, a fully coupled dynamic finite element model was employed for numerical simulation of the response of level to gently sloping saturated sand layers subjected to cyclic loading. This model utilized a critical state two-surface-plasticity constitutive model to simulate the cyclic behavior of sandy soil. Moreover, a recently proposed variable permeability function was implemented in the numerical model to reflect the effects of soil permeability variations during the liquefaction phenomenon. The numerical model was validated by simulating a number of well-documented geotechnical centrifuge tests with different relative density of sand, base acceleration time history, and surface... 

    Two-and three-dimensional numerical simulations of supersonic ramped inlet

    , Article Scientia Iranica ; Volume 25, Issue 4 , 2018 , Pages 2198-2207 ; 10263098 (ISSN) Askari, R ; Soltani, M.R ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    Two-dimensional (2D) and three-dimensional (3D) numerical simulations of an external compression supersonic ramped inlet are presented for a free stream Mach number of 2. A comparison made between numerical results and experimental data showed that multi-block structured gird using standard k - " turbulence model gives acceptable results. The shape of present inlet diffuser was transformed gradually into a circular one to encompass the Aerodynamic Interface Plane (AIP). It was observed that the 3D simulation predicted a more accurate static pressure distribution during the length of supersonic inlet and total pressure distribution at the AIP in comparison with the 2D one. Further, a better...