Loading...
Search for: glass
0.011 seconds
Total 427 records

    Dynamic Performance Enhancement of RC Slabs by Steel Fibers vs. Externally Bonded GFRP Sheets under Impact Loading

    , Ph.D. Dissertation Sharif University of Technology Soltani, Hesam (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    Recently, to improve the dynamic behavior of Reinforced Concrete (RC) slabs under impact load, the methods of externally bonding Glass Fiber Reinforced Polymer (GFRP) sheets to slab and internally reinforcing concrete by steel fibers have been proposed. Nevertheless, it is required to investigate the comparison between these two methods on response of RC slabs under impact loads. In this study, the influence of volume fraction of steel fibers, the number of GFRP sheet layers (one or two) and the arrangement of GFRP sheets (covering the whole or parts of surface), are examined. Performance of fourteen mm concrete slabs including one plain slab, one steel RC slab, three steel RC slabs... 

    Compressive and Bond Behavior of Concrete-Filled Pultruded GFRP and PE Tubes Under Elevated Temperatures

    , Ph.D. Dissertation Sharif University of Technology Tabatabaeian Nimavard, Mojtaba (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    Concrete-filled GFRP and PE tubes are composite systems using the polymeric tubes as confinement for the marine structures to extend their service life. However, elevated temperatures and thermal cycles in marine environments can affect the behavior of such composite systems. In this investigation, the effect of elevated temperatures and thermal cycles on the performance of concrete-filled pultruded GFRP tubes (CFPGT) and concrete-filled polyethylene tubes (CFPT) is assessed, respectively. For this, different parameters such as concrete core strength (30 and 60 MPa), exposure temperature (25, 100, 200, 300, and 400°C), time exposure (60 and 120 min.), number of thermal cycles (50, 100, and... 

    Immobilization of Concentrated Radioactive Waste from Bushehr Nuclear Power Plant in Glass Matrix

    , M.Sc. Thesis Sharif University of Technology Khatirian, Mahdi (Author) ; Samadfam, Mohammad (Supervisor) ; Sepehrian, Hamid (Supervisor) ; Yadollahi, Ali (Co-Supervisor)
    Abstract
    Considering the operation of the current nuclear reactors and the country's policy to achieve 10,000 megawatts of nuclear power in the horizon of 1420, in the coming years we will face a huge amount of radioactive waste, the majority of which is waste with low and intermediate levels of radioactivity (LILW). A large percentage of the radioactive waste production in Bushehr power plant is concentrated waste with a low and intermediate level of radioactivity (about 70% by volume). Due to the commisining of phase 2 and 3 of Bushehr power plant in the coming years and the increase in the radioactive waste production, proper planning should be done for waste management in order to reduce the... 

    Study of Self-Cleaning Silica Nano Coatings

    , M.Sc. Thesis Sharif University of Technology Hadinejad Sheikh, Farshad (Author) ; Afshar, Abdollah (Supervisor)
    Abstract
    It has always been a challenge to make self-cleaning coatings based on super-hydrophobic properties that can provide the necessary features to be operational in the industry. One of these necessary features is the ability to easily apply the coating on the substrate and reduce the cost by finding the optimal amount of consumables. Therefore, in this research, at first, it was tried to produce silica nanoparticles with a particle size of less than 011 nm using the Stober method, and then the surface of the synthesized nanoparticles was coated with HDTMS (Hexadecyltrimethoxysilane) to make the silica particles, which are hydrophilic in nature, hydrophobic. According to the conducted studies,... 

    Preoxidation Study of Fe-Ni-Co (KOVAR) Alloy on Glass to Metal Sealing Performance

    , M.Sc. Thesis Sharif University of Technology Toloue Farrokh, Najibe (Author) ; Askari, Masoud (Supervisor) ; Kaflou, Ali (Supervisor)
    Abstract
    The Fe-Ni-Co alloy to borosilicate glass seals have been used for many years as hermetic and electrically insulating seals. It is not only excellent in thermal expansion matching but also in good wettability and bond strength too. Oxidation of Kovar was performed in Water vapor, Saturated Nitrogen and N2-H2-H2O atmosphere in tube furnace. Oxide layer composition and thickness changed by varying in oxidation temperature and time. XRD analysis showed different Iron oxides in oxide layer, FeO, Fe3O4 and Fe2O3. However in the third atmosphere no Hematite observed. Increasing oxidation temperature and time result in increasing sample weight gains and roughness. Oxide layer microstructure also was... 

    Synthesis, Characterization and Application of Porous Bioactive Glasses-Based Nanostructures in Bone Tissue Engineering

    , Ph.D. Dissertation Sharif University of Technology Aldhaher, Abdullah (Author) ; Bagherzadeh, Mojtaba (Supervisor) ; Baheiraei, Nafiseh (Co-Supervisor)
    Abstract
    In the upcoming research, with the aim of bone tissue engineering and achieving a new structure, a scaffold based on polyhema (PHEMA) and gelatin (Gel), which are biocompatible polymers for bone tissue, was made and evaluated. Also, in order to improve the bioactivity and mechanical properties, bioactive glass alone (BG45S5) or together with strontium (BG-Sr) was used in the scaffold structure. and chemical by conducting FTIR, XRD, SEM, mechanical strength, bioactivity measurement, contact angle, water absorption and degradation tests. Biological investigations were done using mesenchymal stem cells derived from human bone marrow and with the help of MTT evaluations and SEM photography. The... 

    Design and Fabrication af a Bioceramic-Polymer Composite Scaffold Using Bioprinter for Regeneration of Osteochondral Tissue

    , M.Sc. Thesis Sharif University of Technology Hadian, Hamid Reza (Author) ; Mashayekhan, Shohreh (Supervisor)
    Abstract
    In this work, we have used a 3D printer and unidirectional ice-templating technique in conjunction, to fabricate a novel composite scaffold to facilitate local osteochondral defects tissue regeneration with a cell-free approach. Using ice-templating to induce radially-aligned porosity formation in type I bovine collagen is known to expedite host cells' migration into the scaffold which their ECM secretion shifts cellular milieu toward that of its neighboring tissue layer. We used numerical analysis to design and optimize appropriate freeze-casting mold, finding the optimum value for pin height and metal slab depth to be 4mm and 14mm, respectively. Collagen content equivalent to 2%w/v was... 

    Study on Immobilization of the Spent Ion Exchange Resins of Tehran Research Reactor in Borosilicate Glass

    , M.Sc. Thesis Sharif University of Technology Rastgoo, Pouria (Author) ; Samadfam, Mohammad (Supervisor) ; Yadollahi, Ali (Supervisor) ; Sepehrian, Hamid (Co-Supervisor)
    Abstract
    Considering the operation of the current nuclear reactors and the country's policy to achieve 10,000 megawatts of nuclear power in the horizon of 1420, as well as the construction of research reactors, we will face a huge amount of radioactive waste in the coming years. Meanwhile, spent ion exchange resins constitute a large amount of low and intermediate level (LILW) solid radioactive waste produced from the nuclear industry. Therefore, appropriate precautionary measures should be taken for the immobilization and disposal of these radioactive wastes in order to ensure the sustainable development of the nuclear industry and the protection of the environment and human health. In this study,... 

    Design and Optimization of Hydrofiber Dressings Containing Borosilicate Bioactive Glass Doped with Zinc for Wound Healing

    , M.Sc. Thesis Sharif University of Technology Motahari, Morteza (Author) ; Mashayekhan, Shohreh (Supervisor) ; Karimi, Afzal (Supervisor)
    Abstract
    Wound healing is a complex and regular process. It makes more challenge when the volume of wound exudate becomes uncontrollable. To solve this problem, hydrofiber wound dressings which contain carboxymethyl cellulose fibers are being used. Fast absorption and keeping the moisture in balance specially in chronic wounds, is one of the major features of hydrofiber wound dressings. In this research, which was conducted with the aim of investigating the synergy effect of active glasses and Hydrofiber commercial wound dressing for the healing of skin wounds, especially chronic wounds, the sol-gel method has been used to synthesize bioactive glasses based on borosilicate, replacing a part of CaO... 

    Experimental Study of Drying and Calcination of Simulated High-Level Waste (HLW)

    , M.Sc. Thesis Sharif University of Technology Farahzadi, Zahra (Author) ; Samadfam, Mohammad (Supervisor) ; Zahakifar, Fazel (Supervisor) ; Zaheri, Parisa (Co-Supervisor)
    Abstract
    One of the novel methods of stabilization of nuclear waste is the use of vitrification technology. In order to stabilize high level wastes (HLLW) in glass, it is required that the elements are in their oxide form. Therefore, it is necessary to evaporate the waste and turn it into a solid form so that the elements can be converted into oxide form in the calcination furnace. Hence, one of the challenges of stabilization is the optimization of evaporation and calcination conditions. In this research, the parameters affecting evaporation were first investigated. Using laboratory measurements of application: temperature (110 to 180 °C), presence of nitric acid (0.5 to 4 mol/L), ratio of zirconium... 

    Synthesis and Investigation of Antistatic Coating Properties Based on Tin Oxide by Sol-Gel Method

    , Ph.D. Dissertation Sharif University of Technology Zakerizadeh, Ali Mohammad (Author) ; Dolati, Abolghasem (Supervisor) ; Abdollah Afshar (Supervisor)
    Abstract
    In order to prevent electrostatic attraction on non-conductive surfaces, the most practical solution is to put antistatic coatings to reduce surface resistance. Nano tin oxide coatings are designed to produce surfaces with antistatic properties in the resistance range of 108-1012 Ω/cm. In this project, using a simple method, low temperature, without heat treatment and without the use of additive (dopant), tin oxide films with antistatic property were placed on the glass. Further, in order to obtain a coating with a suitable morphology and structure to increase the surface conductivity, the synthesis of tin oxide using the sol-gel method at ambient temperature was used. And to place the... 

    Fabrication of Bioactive Bone Cement

    , M.Sc. Thesis Sharif University of Technology Mansoori Kermani, Amir Reza (Author) ; Bahrevari, Mohammad Reza (Supervisor) ; Mashayekhan, Shohreh (Supervisor) ; Abd Khodaei, Mohammad Jafar (Supervisor)
    Abstract
    PMMA bone cement lacks biodegradability and the ability to bond with surrounding bone tissue. Therefore, the development of a new generation of bioactive bone cements that are biodegradable and possess adequate mechanical properties as well as desirable setting time is receiving remarkable interest.In this study, we have developed novel mineral-based bioactive bone cements. Our mineral bioactive bone cements were composed of Calcium Sulfate Hemihydrate, Bioactive Glass, and Tricalcium Silicate. Firstly, a binary system composed of Calcium Sulfate Hemihydrate and Bioactive Glass was optimized based on mechanical and setting behavior. Secondly, Tricalcium Silicate was added to the powder phase... 

    Numerical Modelling on Effects of Elevated Temperatures on the Performance of Concrete-filled Pultruded GFRP Tubular Columns

    , M.Sc. Thesis Sharif University of Technology Mollakhalili, Arian (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    Concrete-filled FRP tubes have gained popularity among structures in areas with harsh environmental condition. Despite their unique material properties such as resistance to corrosion, noticeable axial stiffness, and durability, FRP materials have poor resistance to elevated temperatures. This paper presents numerical investigations on the behavior and capacity of concrete-filled pultruded GFRP tubes (CFGFTs) after exposure to elevated temperatures under concentric compression. Variables in this study were the tube’s thickness of 3, 5, and 7mm, the infill concrete’s compressive strengths of 30 and 60MPa, and the exposure temperature of 25, 100, 200, 300, and 400°C. The results in this study... 

    Repair and Connection of Steel Pipes under Internal Pressure using FRP

    , M.Sc. Thesis Sharif University of Technology Safarizadeh, Erfan (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    The repair of pipes that deteriorate over time or due to various factors is a critical issue in engineering. Consequently, effective and novel repair methods, especially using FRP (Fiber-Reinforced Polymer) composites, have gained significant importance. In this research, the repair and connection of pipes using FRP are examined. In the pipe repair section, through hydrostatic testing, various factors such as the damaged area, the number of sharp corner points, the width of the sheets, the number of layers, and the pre- stress condition of the FRP are studied for their impact on the pipe's ultimate pressure tolerance. Also, in the pipe connection section, with hydrostatic tests, the ultimate... 

    Molecular dynamics simulation of melting, solidification and remelting processes of aluminum [electronic resource]

    , Article Iranian Journal of Science and Technology ( IJST): Transactions of Mechanical Engineering ; 2012, Vol.36, No. M1, P.13-23 Solhjoo, S ; Simchi, A. (Abdolreza) ; Aashuri, H ; Sharif University of Technology
    Abstract
    A molecular dynamics simulation study has been performed to investigate the solidification and remelting of aluminum using Sutton - Chen many body potential. Different numbers of atoms from 108 to 2048 atoms were considered to find an adequate size for the system. Three different cooling and heating rates, i.e. 1 0 12 K/s, 10 13 K/s and 10 14 K/s, were used. The structure of the system was examined using radial distribution function. The melting and crystallization temperatures of aluminum were evaluated by calculating the variation of heat capacity during the phase t ransformation. Additionally, Wendt – Abraham parameters were calculated to determine the glass transition temperature. It is... 

    Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites [electronic resource]

    , Article Journal of Materials Science and Engineering: C ; 10 October 2011, Volume 31, Issue 7, Pages 1526–1533 Tamjid, E ; Bagheri, R ; Vossoughi, M ; Simchi, A. (Abdolreza) ; Sharif University of Technology
    Abstract
    Polycaprolactone (PCL) composite films containing 5 wt.% bioactive glass (BG) particles of different sizes (6 μm, 250 nm, < 100 nm) were prepared by solvent casting methods. The ultra-fine BG particles were prepared by high-energy mechanical milling of commercial 45S5 Bioglass® particles. The characteristics of bioactive glass particles were studied by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and X-ray diffraction (XRD) methods. In vitro bioactivity of the PCL/BG composite films was evaluated through immersion in the simulated body fluid (SBF). The films were analyzed by FE-SEM, energy dispersive... 

    Monitoring the effect of discontinuous shales on the surfactant flooding performance in heavy oil reservoirs using 2D glass micromodels

    , Article Petroleum Science and Technology ; Vol. 32, issue. 12 , Apr , 2014 , p. 1404-1417 ; ISSN: 10916466 Mohammadi, S ; Kharrat, R ; Masihi, M ; Ghazanfari, M. H ; Saidian, M ; Sharif University of Technology
    Abstract
    Although most heavy oil reservoirs contain discontinuous shaly structures, there is a lack of fundamental understanding how the shaly structures affect the oil recovery efficiency, especially during surfactant flooding to heavy oils. Here, an experimental study was conducted to examine the effect of discontinuous shales on performance of surfactant flooding by introducing heterogeneities to represent streaks of shale in five-spot glass micromodels. Results show that oil recovery in presence of shale streak is lower than in its absence. Based on the authors' observations, the presence of flow barriers causes premature breakthrough of injected fluids and also an unstable displacement front. As... 

    Monitoring wettability alteration by silica nanoparticles during water flooding to heavy oils in five-spot systems: A pore-level investigation

    , Article Experimental Thermal and Fluid Science ; Vol. 40, issue , July , 2012 , p. 168-176 ; ISSN: 08941777 Maghzi, A ; Mohammadi, S ; Ghazanfari, M. H ; Kharrat, R ; Masihi, M ; Sharif University of Technology
    Abstract
    It is well known that the displacement efficiency of EOR processes is mainly affected by wettability of porous medium; however, the role of nanoparticles on wettability alteration of pores surfaces remains a topic of debate in the literature. Furthermore, a little is known about how the dispersed silica nanoparticles affect the microscopic/macroscopic recovery efficiency of heavy oils during common immiscible EOR processes such as water flooding. In this study, a series of injection experiments was performed on five-spot glass micromodel which is initially saturated with the heavy oil. Distilled water and dispersed silica nanoparticles in water (DSNW) at different values of weight percent... 

    Experimental study of miscible displacement with hydrocarbon solvent in shaly heavy oil reservoirs using five-spot micromodels: The role of shale geometrical characteristics

    , Article Journal of Porous Media ; Vol. 15, issue. 5 , 2012 , p. 415-427 ; ISSN: 1091028X Mohammadi, S ; Ghazanfari, M. H ; Masihi, M ; Kharrat, R ; Sharif University of Technology
    Abstract
    Most of the heavy oil reservoirs contain discontinuous shale which affects fluid flow through porous media as well as recovery efficiency during enhanced oil recovery processes. However, the role of shale geometrical characteristics (including orientation, length, discontinuity, and spacing of the shale) on oil recovery remains a topic of debate in the literature, especially during miscible injection of heavy oils and five-spot systems. Here, a series of hydrocarbon solvent injection tests have been performed on various five-spot glass micromodels containing barriers which are initially saturated with heavy oil under fixed flow rate conditions. Oil recoveries as a function of pore volumes of... 

    Improvement in CO2/H2 separation by fabrication of poly(ether-b-amide6)/glycerol triacetate gel membranes

    , Article Journal of Membrane Science ; Vol. 469, issue , 2014 , pp. 43-58 ; ISSN: 03767388 Rabiee, H ; Soltanieh, M ; Mousavi, S. A ; Ghadimi, A ; Sharif University of Technology
    Abstract
    The purpose of this study is to investigate separation performance of poly(ether-b-amide6) (Pebax1657)/glycerol triacetate (GTA) gel membranes for CO2 removal from H2, N2 and CH4. GTA as a low molecular weight and highly CO2-phill compound was added to membrane structure at various weight fractions, 20%, 40%, 60% and 80% of Pebax, to fabricate a new high solubility selective membrane with improved performance. Permeation of pure gases was studied at different temperatures from 25 to 65°C and pressures from 4 to 24bar and ideal selectivities were calculated. Results indicated enhancement in permeation for all tested gases. For example, at a pressure of 4bar and a temperature of 25°C, membrane...