Loading...
Search for: doubly-fed-induction-generator
0.009 seconds
Total 57 records

    Improvement of DFIG Under Unbalanced Voltage Condition

    , M.Sc. Thesis Sharif University of Technology Karimi Khouzani, Hadi (Author) ; Parniani, Mostafa (Supervisor)
    Abstract
    In this thesis, performance of doubly fed induction generators in wind turbine, under stator unbalanced voltage condition has been studied. Therefore, beside of presenting related equations and models for DFIG, drawbacks of DFIG performance under unbalanced voltage condition on variables such as electric torque, active and reactive stator power and stator current have been shown. Then, controller have been designed in the way that can eliminate electric torque oscillation, active power oscillation, negative sequences of stator current and rotor current. The controller is designed base on decoupling sequences in synchronous reference and stator voltage orientation method(SVO) that consist of... 

    Analysis and Improvement of Dynamic Performance and Fault Ride-Through Capability of Wind Turbines Based on Doubly-Fed Induction Generators

    , Ph.D. Dissertation Sharif University of Technology Rahimi Kelishadi, Mohsen (Author) ; Parniani, Mostafa (Supervisor)
    Abstract
    Variable speed wind turbines (VSWTs) provide the capability of wide speed operation and independent control of active and reactive power. In contrast to the fixed speed WTs, they have higher efficiency, power quality and controllability. VSWTs are mainly divided in two categories: WTs based on doubly fed induction generator (DFIG) and WTs based on full converter with permanent magnet synchronous generator.
    At now, among the different alternatives to obtain VSWTs, DFIGs are the most commonly used. This is because the voltage source converter (VSC) in DFIG has to handle a fraction of the total power under steady state conditions, and thus the size and cost of the converter is reduced.... 

    Optimum Control of DFIG Based Wind Turbine under Grid Voltage’s Abnormal Conditions

    , M.Sc. Thesis Sharif University of Technology Khazaeli Moghaddam, Farid (Author) ; Oraee Mirzamani, Hashem (Supervisor)
    Abstract
    In this project, the main purpose is attaining the optimum controller for DFIG under permanent voltage unbalances. To achieve this purpose, firstly, the wind turbines’ control strategies, and main control subsystems including DFIG’s controller, Pitch control system, as well as Yaw’s control system are reviewed. The efficient control algorithms to achieve the control purposes for these three subsystems are introduced. To continue, it is focused on generator’s controller, and the different methods besides their performance are discussed. In order to improve DFIG’s controller performance under permanent grid voltage’s unbalance condition, at first, the problems of operating during such a... 

    Power System Load Frequency Control in the Presence of Wind Turbines

    , M.Sc. Thesis Sharif University of Technology Ashoori Zadeh, Alireza (Author) ; Ranjbar, Ali Mohammad (Supervisor)
    Abstract
    This study presents the application of the doubly fed induction generator (DFIG) to reduce the frequency deviation and improve frequency of a power system. This has been done by proposing a wind turbine model and a new fuzzy controller. The fuzzy controller has been suggested to change the speed of the wind turbine rotor and modify the impacts of wind speed fluctuations on the output power. The fuzzy controller parameters are optimized using the genetic algorithm (GA) to achieve the appropriate transient response. A smart controller is combined with fuzzy controller to optimize the usage of wind turbine’s kinetic energy. Furthermore, the DFIG with the proposed controller participates in the... 

    Robust Multivariable Control of Electro-mechanical System in Horizontal Wind Turbines under Off-design Conditions

    , M.Sc. Thesis Sharif University of Technology Faraji Nayeh, Reza (Author) ; Vosughi Vahdat, Bijan (Supervisor) ; Moradi, Hamed (Supervisor)
    Abstract
    Advanced control techniques are required to achieve a cost-effective and reliable use of the wind power generation. The wind turbines are generally controlled based on two control objectives: the turbine protection and the generation of acceptable power for the utility grid. These objectives are achieved if the control inputs are applied based on appropriate control logics. In this work, a nonlinear multivariable model of the wind turbine with a DFIG generator is considered. The rotor speed and the d-axis rotor current (as the control outputs) are controlled via manipulation of the two generator voltages (as the control inputs) in low wind velocity condition. For high wind velocity, the... 

    Study of HVDC Transmission for Offshore Wind Farms Based on Voltage Source Converters

    , M.Sc. Thesis Sharif University of Technology Safaeian, Reza (Author) ; Parniani, Mostafa (Supervisor)
    Abstract
    In this thesis, DC transmission of offshore wind farms is studied thoroughly. Various system configurations that are introduced in the literatures are discussed and their control scheme for normal conditions and grid faults are studied. Then, the HVDC transmission based on voltage source converter, located between a local offshore ac grid and the onshore ac system is investigated as the most practical choice. The HVDC linke circuit elements are calculated and the control strategies of the offshore and onshore converters are introduced. DFIGs are considered to be the best choice for the offshore wind turbine generators. Then, the system is simulated and the frequency of the offshore grid is... 

    Reliability Model of Wind Turbine System with BDFG

    , Ph.D. Dissertation Sharif University of Technology Arabian, Hooman (Author) ; Oraee, Hashem (Supervisor) ; Fotuhi Firouzabad, Mahmud (Supervisor)
    Abstract
    Considerable attention has been given in recent years to renewable energy sources due to concerns about dwindling fuel reserves and the potential impact of conventional energy systems on the environment. Wind power is one form of renewable energy resources and also considered as Dispersed Generation (DG). Widespread utilization of wind power imposes many effects on planning and operation of power system. In other side, reliability evaluation and enhancement is an important factor in modern power system planning and operation. So, reliability assessment of wind turbines is of great importance and will receive more attention in the future according to increase of WT utilization. The... 

    Supervisory Model-based Predictive Control for Voltage Regulation of a Grid-Connected Wind Farm

    , M.Sc. Thesis Sharif University of Technology Sabzi, Hadi (Author) ; Sadati, Nasser (Supervisor)
    Abstract
    Concerns about fossil fuels and the consequent effects of burning such fuels on the environment have drawn attention of different countries around the world to the development of renewable energy systems, and it has encouraged researchers to focus on expanding the methods of using different sources of renewable energy. One of the most important renewable energies is wind energy, which is generated by wind turbines. A cluster of wind turbines forms a wind farm. Wind turbines can be equipped with a supervisory control system that sends the data measured by the sensors to the operator. Design of supervisory control algorithm for a wind farm requires a model of the wind farm system. The task of... 

    Toward a comprehensive model of large-scale dfig-based wind farms in adequacy assessment of power systems

    , Article IEEE Transactions on Sustainable Energy ; Vol. 5, issue. 1 , 2014 , p. 55-63 ; ISSN: 19493029 Ghaedi, A ; Abbaspour, A ; Fotuhi-Firuzabad, M ; Moeini-Aghtaie, M ; Sharif University of Technology
    Abstract
    With the current focus on energy and environment, efficient integration of renewable energies, especially wind energy into power systems, is becoming essential. Furthermore, to fully capture wind potentials and to recognize the unique characteristics associated with wind energy in power systems adequacy analysis, a profound inquiry is required. In this way, this paper tries to establish a comprehensive analytical approach for reliability modeling of doubly-fed induction generator (DFIG)-based wind farms. First, the most impressive components of wind turbines are introduced. It then continues with integrating developed state space model of wind turbines and their production uncertainties,... 

    Electromagnetic-thermal design optimization of the brushless doubly fed induction generator

    , Article IEEE Transactions on Industrial Electronics ; Vol. 61, issue. 4 , October , 2014 , PP. 1710-1721 ; ISSN: 02780046 Gorginpour, H ; Oraee, H ; McMahon, R. A ; Sharif University of Technology
    Abstract
    In view of its special features, the brushless doubly fed induction generator (BDFIG) shows high potentials to be employed as a variable-speed drive or wind generator. However, the machine suffers from low efficiency and power factor and also high level of noise and vibration due to spatial harmonics. These harmonics arise mainly from rotor winding configuration, slotting effects, and saturation. In this paper, analytical equations are derived for spatial harmonics and their effects on leakage flux, additional loss, noise, and vibration. Using the derived equations and an electromagnetic-thermal model, a simple design procedure is presented, while the design variables are selected based on... 

    Toward a comprehensive model of large-scale dfig-based wind farms in adequacy assessment of power systems

    , Article IEEE Transactions on Sustainable Energy ; Vol. 5, issue. 1 , 2014 , p. 55-63 Ghaedi, A ; Abbaspour, A ; Fotuhi-Firuzabad, M ; Moeini-Aghtaie, M ; Sharif University of Technology
    Abstract
    With the current focus on energy and environment, efficient integration of renewable energies, especially wind energy into power systems, is becoming essential. Furthermore, to fully capture wind potentials and to recognize the unique characteristics associated with wind energy in power systems adequacy analysis, a profound inquiry is required. In this way, this paper tries to establish a comprehensive analytical approach for reliability modeling of doubly-fed induction generator (DFIG)-based wind farms. First, the most impressive components of wind turbines are introduced. It then continues with integrating developed state space model of wind turbines and their production uncertainties,... 

    A novel rotor configuration for brushless doubly-fed induction generators

    , Article IET Electric Power Applications ; Volume 7, Issue 2 , 2013 , Pages 106-115 ; 17518660 (ISSN) Gorginpour, H ; Jandaghi, B ; Oraee, H ; Sharif University of Technology
    2013
    Abstract
    Brushless Doubly-Fed Induction Generator has attractive features to be the first choice in next generation of wind generators. However, its efficiency and power-to-weight ratio are slightly lower in comparison to induction machine with the same rating. Considerable part of these imperfections arises from the rotor design, which produces magnetic field with considerable undesirable spatial harmonics. This paper proposes a novel rotor configuration to reduce spatial harmonic distortion of air-gap magnetic field as well as improving some drawbacks of the conventional structure, including unequal magnitudes of rotor bar currents, teeth saturation at low average air gap magnetic fields, high core... 

    Wind energy conversion system based on DFIG with open switch fault tolerant six-legs AC-DC-AC converter

    , Article Proceedings of the IEEE International Conference on Industrial Technology, Cape Town ; February , 2013 , Pages 1656-1661 ; 9781467345699 (ISBN) Shahbazi, M ; Zolghadri, M. R ; Poure, P ; Saadate, S ; The Institute of Electrical and Electronics Engineers (IEEE); IEEE Industrial Electronics Society (IES); IEEE Technology Management Council; IEEE Region 8; IEEE South Africa Section IE/IA/PEL Joint Chapter ; Sharif University of Technology
    2013
    Abstract
    Continuity of service of wind energy conversion systems as well as their reliability and performances are some of the major concerns in this power generation area. Six-legs AC/DC/AC converters are normally used in modern wind energy systems like as in the system with a doubly-fed induction generator (DFIG). A sudden failure of the converter can lead to the total or partial loss of the control of the phase currents and can cause serious system malfunction or shutdown. Therefore, to prevent the spread of the fault to the other system components and to ensure continuity of service, fault tolerant converter topologies associated to quick and effective fault detection and compensation methods... 

    The impact of wind farms with doubly fed induction generators on power system electromechanical oscillations

    , Article Renewable Energy ; Volume 50 , 2013 , Pages 780-785 ; 09601481 (ISSN) Jafarian, M ; Ranjbar, A. M ; Sharif University of Technology
    2013
    Abstract
    Introduction of large amounts of new wind generation can affect the small signal stability of power systems with three mechanisms: displacing synchronous generators (SGs); reducing SGs power generation; and the dynamics of wind farms (WFs) interacting with the electromechanical mode of SGs. In this paper a novel approach is developed to investigate the impact of the latter mechanism on existing power systems oscillations. In this approach, the dynamic behavior of grid connected WFs is studied independent of the dynamic behavior of system SGs. This approach helps to identify the conditions in which the dynamics of WFs may interact with the electromechanical mode of SGs. Also it helps to... 

    Dynamic modeling of a wind turbine with brushless doubly fed induction generator

    , Article 2012 3rd Power Electronics and Drive Systems Technology, PEDSTC 2012, 15 February 2012 through 16 February 2012 ; February , 2012 , Pages 490-494 ; 9781467301114 (ISBN) Tohidi, S ; Zolghadri, M. R ; Oraee, H ; Oraee, A ; Sharif University of Technology
    2012
    Abstract
    Brushless Doubly Fed Induction Generator (BDFIG) has been recently proposed to be used in variable speed wind turbines. This paper intends to investigate the influence of certain model simplifications to obtain a reduced-order model of a wind turbine with BDFIG suitable for transient studies. To achieve this goal, small signal analysis is performed for a recently manufactured 250 kVA BDFIG to obtain system modes and their participation factors. Identifying highly damped modes, influences of neglecting dynamics of their participated states are studied through time-domain simulation in MATLAB/Simulink  

    Grid-fault ride-through analysis and control of wind turbines with doubly fed induction generators

    , Article Electric Power Systems Research ; Volume 80, Issue 2 , February , 2010 , Pages 184-195 ; 03787796 (ISSN) Rahimi, M ; Parniani, M ; Sharif University of Technology
    2010
    Abstract
    This paper deals with the low voltage ride-through (LVRT) control of wind turbines with doubly fed induction generators (DFIGs) under symmetrical voltage dips. The investigation first develops a mathematical formula for the rotor current and rotor voltage when DFIG is subjected to a symmetrical voltage dip. From the analysis, the reasons of rotor inrush current and factors influencing it are inferred. Then, a control scheme enhancing the wind turbine LVRT capability is designed and simulated. The proposed control scheme consists of a nonlinear control strategy applied to the rotor-side converter and a dc-link voltage control applied to the grid-side converter. It improves the damping of DFIG... 

    Reliability comparison of direct-drive and geared-drive wind turbine concepts

    , Article Wind Energy ; Volume 13, Issue 1 , 2010 , Pages 62-73 ; 10954244 (ISSN) Arabian Hoseynabadi, H ; Tavner, P. J ; Oraee, H ; Sharif University of Technology
    Abstract
    This paper proposes for wind turbines (WTs) an analytical reliability method, used on other engineering systems, to compare the reliability of different turbine concepts. The main focus of the paper is to compare the reliability of geared generator and direct-drive concept WTs. Modification methods are also recommended for improving the availability of WTs and geared generator concept incorporating doubly fed induction generator  

    Spare parts management algorithm for wind farms using structural reliability model and production estimation

    , Article IET Renewable Power Generation ; Volume 10, Issue 7 , Volume 10, Issue 7 , 2016 , Pages 1041-1047 ; 17521416 (ISSN) Mani, S ; Oraee, A ; Oraee, H ; Sharif University of Technology
    Institution of Engineering and Technology 
    Abstract
    Doubly fed induction generators (DFIGs) are widely used in wind power systems; hence their reliability model is an important consideration for production assessment and economic analysis of wind energy conversion systems. However, to date mutual influences of reliability analysis, production estimations and economic assessments of wind farms have not been fully investigated. This study proposes a reliability model for DFIG wind turbines considering their subcomponent failure rates and downtimes. The proposed production estimation algorithm leads to an economic assessment for wind farms. A comprehensive spare parts management procedure is then presented in the study. As a case study,... 

    Optimal robust first-order frequency controller design for DFIG-based wind farm utilising 16-plant theorem

    , Article IET Renewable Power Generation ; Volume 12, Issue 3 , 2018 , Pages 298-310 ; 17521416 (ISSN) Toulabi, M. R ; Salehi Dobakhshari, A ; Ranjbar, A. M ; Sharif University of Technology
    Institution of Engineering and Technology  2018
    Abstract
    With increasing the share of wind farms in generation profile, their contribution to frequency regulation has become crucial. This study presents an optimal robust first-order frequency controller in the wind farms, which collectively emulates the inertial response as well as governor droop of synchronous generators. To account for various uncertainties associated with system inertia, damping, and doubly-fed induction generator (DFIG)-based wind turbine's parameters, the robustness of controller is verified through the 16-plant theorem. An analytic method based on the small-signal model of the system is utilised to determine the stability region of the first-order controller. To evaluate the... 

    Linear multi-variable control technique for smart power management of wind turbines

    , Article 2012 International Conference onAdvanced Mechatronic Systems, ICAMechS 2012 ; 2012 , Pages 559-564 ; 9780955529382 (ISBN) Emami, S. A ; Banazadeh, A ; Sharif University of Technology
    2012
    Abstract
    Variable speed wind turbines are widely used in the modern power industry. These turbines that are usually driven by doubly fed induction generators (DFIG) contain two groups of controlling variables; mechanical variables like pitch angle, and electrical variables like rotor voltage. During the turbine operation, with variable wind speed, power must be managed in two different regimes; power optimization and power limitation. In the current research, initially a non-linear simulation, based on the general wind turbine dynamic model is presented. Then, the desired controllers for both pitch angle and generator voltage components are constructed. To validate turbine behavior and controller...