Loading...
Search for: doubly-fed-induction-generator
0.01 seconds
Total 57 records

    Toward a comprehensive model of large-scale dfig-based wind farms in adequacy assessment of power systems

    , Article IEEE Transactions on Sustainable Energy ; Vol. 5, issue. 1 , 2014 , p. 55-63 ; ISSN: 19493029 Ghaedi, A ; Abbaspour, A ; Fotuhi-Firuzabad, M ; Moeini-Aghtaie, M ; Sharif University of Technology
    Abstract
    With the current focus on energy and environment, efficient integration of renewable energies, especially wind energy into power systems, is becoming essential. Furthermore, to fully capture wind potentials and to recognize the unique characteristics associated with wind energy in power systems adequacy analysis, a profound inquiry is required. In this way, this paper tries to establish a comprehensive analytical approach for reliability modeling of doubly-fed induction generator (DFIG)-based wind farms. First, the most impressive components of wind turbines are introduced. It then continues with integrating developed state space model of wind turbines and their production uncertainties,... 

    Calculation of core and stray load losses in brushless doubly fed induction generators

    , Article IEEE Transactions on Industrial Electronics ; Vol. 61, issue. 7 , 2014 , pp. 3167-3177 ; SSN: 02780046 Gorginpour, H ; Oraee, H ; Abdi, E ; Sharif University of Technology
    Abstract
    The brushless doubly fed induction generator (BDFIG) has substantial benefits, which make it an attractive alternative as a wind generator. However, it suffers from lower efficiency and larger dimensions in comparison with the doubly fed induction generator. A major part of drawbacks arises from undesirable spatial harmonics of air-gap magnetic field. Calculation of core loss is an important issue in optimal design studies to improve the performance characteristics. The iron loss is higher and has a more complex nature in BDFIGs in contrast with conventional machines. Furthermore, additional losses cannot be ignored due to a high level of spatial harmonics distortion. This paper aims to... 

    Low voltage ride-through of DFIG and brushless DFIG: Similarities and differences

    , Article Electric Power Systems Research ; Vol. 110 , May , 2014 , p. 64-72 ; ISSN: 03787796 Tohidi, S ; Tavner, P ; McMahon, R ; Oraee, H ; Zolghadri, M. R ; Shao, S ; Abdi, E ; Sharif University of Technology
    Abstract
    The brushless doubly fed induction generator (BDFIG) has been proposed as a viable alternative in wind turbines to the commonly used doubly fed induction generator (DFIG). The BDFIG retains the benefits of the DFIG, i.e. variable speed operation with a partially rated converter, but without the use of brush gear and slip rings, thereby conferring enhanced reliability. As low voltage ride-through (LVRT) performance of the DFIG-based wind turbine is well understood, this paper aims to analyze LVRT behavior of the BDFIG-based wind turbine in a similar way. In order to achieve this goal, the equivalence between their two-axis model parameters is investigated. The variation of flux linkages,... 

    Magnetic equivalent circuit modelling of brushless doubly-fed induction generator

    , Article IET Renewable Power Generation ; Vol. 8, Issue. 3 , 2014 , pp. 334-346 ; ISSN: 1752-1416 Gorginpour, H ; Jandaghi, B ; Oraee, H ; Abdi, E ; Sharif University of Technology
    Abstract
    The brushless doubly-fed induction generator (BDFIG) has substantial benefits, which make it an attractive alternative as a wind turbine generator. The aim of this work is to present a nodal-based magnetic equivalent circuit (MEC) model of the BDFIG which provides performance characteristics and flux density distributions. The model takes into account stator winding distributions, special configuration of rotor bars, slotting effects, teeth saturation, flux fringing and current displacement effects. The real flux tubes are considered for creating an MEC network and calculating its non-linear elements. A method for simplifying the rotor magnetic network has been applied and Gauss elimination... 

    Electromagnetic-thermal design optimization of the brushless doubly fed induction generator

    , Article IEEE Transactions on Industrial Electronics ; Vol. 61, issue. 4 , October , 2014 , PP. 1710-1721 ; ISSN: 02780046 Gorginpour, H ; Oraee, H ; McMahon, R. A ; Sharif University of Technology
    Abstract
    In view of its special features, the brushless doubly fed induction generator (BDFIG) shows high potentials to be employed as a variable-speed drive or wind generator. However, the machine suffers from low efficiency and power factor and also high level of noise and vibration due to spatial harmonics. These harmonics arise mainly from rotor winding configuration, slotting effects, and saturation. In this paper, analytical equations are derived for spatial harmonics and their effects on leakage flux, additional loss, noise, and vibration. Using the derived equations and an electromagnetic-thermal model, a simple design procedure is presented, while the design variables are selected based on... 

    Toward a comprehensive model of large-scale dfig-based wind farms in adequacy assessment of power systems

    , Article IEEE Transactions on Sustainable Energy ; Vol. 5, issue. 1 , 2014 , p. 55-63 Ghaedi, A ; Abbaspour, A ; Fotuhi-Firuzabad, M ; Moeini-Aghtaie, M ; Sharif University of Technology
    Abstract
    With the current focus on energy and environment, efficient integration of renewable energies, especially wind energy into power systems, is becoming essential. Furthermore, to fully capture wind potentials and to recognize the unique characteristics associated with wind energy in power systems adequacy analysis, a profound inquiry is required. In this way, this paper tries to establish a comprehensive analytical approach for reliability modeling of doubly-fed induction generator (DFIG)-based wind farms. First, the most impressive components of wind turbines are introduced. It then continues with integrating developed state space model of wind turbines and their production uncertainties,... 

    Design and implementation of current based vector control model of brushless doubly fed induction generator

    , Article 2013 3rd International Conference on Electric Power and Energy Conversion Systems, EPECS 2013 2013, Article number 6713022 ; 2013 ; 9781479906888 (ISBN) Moghaddam, F. K ; Gorginpour, H ; Hajbabaei, A ; Ouni, S ; Oraee, H ; Sharif University of Technology
    2013
    Abstract
    This paper is aimed at proposing a current based vector control model of the brushless doubly fed induction generator, modelling the presented control method, as well as implementing the proposed algorithm by DSP. In order to achieve the purpose, by presenting a detailed coupled circuit model of BDFIG, the vector model and then the current based vector control algorithm of the mentioned machine are acquired. The way of independent control of torque and power, and also the structure of speed controller amongst the proposed control model are discussed. Additionally, the concepts behind the proposed structure of the speed control system and the way of determining the model parameters are... 

    A novel modeling approach for design studies of brushless doubly fed induction generator based on magnetic equivalent circuit

    , Article IEEE Transactions on Energy Conversion ; Volume 28, Issue 4 , 2013 , Pages 902-912 ; 08858969 (ISSN) Gorginpour, H ; Oraee, H ; McMahon, R. A ; Sharif University of Technology
    2013
    Abstract
    Brushless doubly fed induction generator (BDFIG) has substantial benefits, which make it an attractive alternative as a wind turbine generator. However, it suffers from lower efficiency and larger dimensions in comparison to DFIG. Hence, optimizing the BDFIG structure is necessary for enhancing its situation commercially. In previous studies, a simple model has been used in BDFIG design procedure that is insufficiently accurate. Furthermore, magnetic saturation and iron loss are not considered because of difficulties in determination of flux density distributions. The aim of this paper is to establish an accurate yet computationally fast model suitable for BDFIG design studies. The proposed... 

    A novel rotor configuration for brushless doubly-fed induction generators

    , Article IET Electric Power Applications ; Volume 7, Issue 2 , 2013 , Pages 106-115 ; 17518660 (ISSN) Gorginpour, H ; Jandaghi, B ; Oraee, H ; Sharif University of Technology
    2013
    Abstract
    Brushless Doubly-Fed Induction Generator has attractive features to be the first choice in next generation of wind generators. However, its efficiency and power-to-weight ratio are slightly lower in comparison to induction machine with the same rating. Considerable part of these imperfections arises from the rotor design, which produces magnetic field with considerable undesirable spatial harmonics. This paper proposes a novel rotor configuration to reduce spatial harmonic distortion of air-gap magnetic field as well as improving some drawbacks of the conventional structure, including unequal magnitudes of rotor bar currents, teeth saturation at low average air gap magnetic fields, high core... 

    Robustness investigation of the linear multi-variable control technique for power management of DFIG wind turbines

    , Article International Journal of Advanced Mechatronic Systems ; Volume 5, Issue 1 , 2013 , Pages 37-46 ; 17568412 (ISSN) Emami, S. A ; Banazadeh, A ; Sharif University of Technology
    2013
    Abstract
    Variable speed wind turbines are widely used in the modern power industry. These turbines that are usually driven by doubly fed induction generators (DFIGs) contain two groups of controlling variables; mechanical variables like pitch angle and electrical variables like rotor voltage. During the turbine operation, with variable wind velocity, power must be managed in two regimes; power optimisation and power limitation. In the current research, initially a non-linear simulation, based on the general wind turbine dynamic model is presented. Then, the desired controllers for both pitch angle and generator voltage components are constructed. After designing the controller, in order to... 

    Comparison between different DPC methods applied to DFIG wind turbines

    , Article International Journal of Renewable Energy Research ; Volume 3, Issue 2 , 2013 , Pages 446-452 ; 13090127 (ISSN) Tavakoli, S. M ; Pourmina, M. A ; Zolghadri, M. R ; Sharif University of Technology
    2013
    Abstract
    In this paper the direct power control methods of doubly fed induction generator in wind turbine applications are studied. In the methods under study, the proper voltage space vector of the rotor side converter is selected using a switching table which is derived from flux position and the difference between the measured and reference stator active and reactive powers. Various simulations are performed in Matlab/Simulink software on a DFIG system in order to investigate the dynamic performance and robustness of the proposed control methods against machine internal parameters variations  

    Wind energy conversion system based on DFIG with open switch fault tolerant six-legs AC-DC-AC converter

    , Article Proceedings of the IEEE International Conference on Industrial Technology, Cape Town ; February , 2013 , Pages 1656-1661 ; 9781467345699 (ISBN) Shahbazi, M ; Zolghadri, M. R ; Poure, P ; Saadate, S ; The Institute of Electrical and Electronics Engineers (IEEE); IEEE Industrial Electronics Society (IES); IEEE Technology Management Council; IEEE Region 8; IEEE South Africa Section IE/IA/PEL Joint Chapter ; Sharif University of Technology
    2013
    Abstract
    Continuity of service of wind energy conversion systems as well as their reliability and performances are some of the major concerns in this power generation area. Six-legs AC/DC/AC converters are normally used in modern wind energy systems like as in the system with a doubly-fed induction generator (DFIG). A sudden failure of the converter can lead to the total or partial loss of the control of the phase currents and can cause serious system malfunction or shutdown. Therefore, to prevent the spread of the fault to the other system components and to ensure continuity of service, fault tolerant converter topologies associated to quick and effective fault detection and compensation methods... 

    The impact of wind farms with doubly fed induction generators on power system electromechanical oscillations

    , Article Renewable Energy ; Volume 50 , 2013 , Pages 780-785 ; 09601481 (ISSN) Jafarian, M ; Ranjbar, A. M ; Sharif University of Technology
    2013
    Abstract
    Introduction of large amounts of new wind generation can affect the small signal stability of power systems with three mechanisms: displacing synchronous generators (SGs); reducing SGs power generation; and the dynamics of wind farms (WFs) interacting with the electromechanical mode of SGs. In this paper a novel approach is developed to investigate the impact of the latter mechanism on existing power systems oscillations. In this approach, the dynamic behavior of grid connected WFs is studied independent of the dynamic behavior of system SGs. This approach helps to identify the conditions in which the dynamics of WFs may interact with the electromechanical mode of SGs. Also it helps to... 

    Analysis and enhancement of low-voltage ride-through capability of brushless doubly fed induction generator

    , Article IEEE Transactions on Industrial Electronics ; Volume 60, Issue 3 , March , 2013 , Pages 1146-1155 ; 02780046 (ISSN) Tohidi, S ; Oraee, H ; Zolghadri, M. R ; Shao, S ; Tavner, P ; Sharif University of Technology
    2013
    Abstract
    This paper discusses the dynamic behavior of the brushless doubly fed induction generator during the grid faults which lead to a decrease in the generator's terminal voltage. The variation of the fluxes, back EMFs, and currents are analyzed during and after the voltage dip. Furthermore, two alternative approaches are proposed to improve the generator ride-through capability using crowbar and series dynamic resistor circuits. Appropriate values for their resistances are calculated analytically. Finally, the coupled circuit model and the generator's speed and reactive power controllers are simulated to validate the theoretical results and the effectiveness of the proposed solutions. Moreover,... 

    Linear multi-variable control technique for smart power management of wind turbines

    , Article 2012 International Conference onAdvanced Mechatronic Systems, ICAMechS 2012 ; 2012 , Pages 559-564 ; 9780955529382 (ISBN) Emami, S. A ; Banazadeh, A ; Sharif University of Technology
    2012
    Abstract
    Variable speed wind turbines are widely used in the modern power industry. These turbines that are usually driven by doubly fed induction generators (DFIG) contain two groups of controlling variables; mechanical variables like pitch angle, and electrical variables like rotor voltage. During the turbine operation, with variable wind speed, power must be managed in two different regimes; power optimization and power limitation. In the current research, initially a non-linear simulation, based on the general wind turbine dynamic model is presented. Then, the desired controllers for both pitch angle and generator voltage components are constructed. To validate turbine behavior and controller... 

    Dynamic modeling of a wind turbine with brushless doubly fed induction generator

    , Article 2012 3rd Power Electronics and Drive Systems Technology, PEDSTC 2012, 15 February 2012 through 16 February 2012 ; February , 2012 , Pages 490-494 ; 9781467301114 (ISBN) Tohidi, S ; Zolghadri, M. R ; Oraee, H ; Oraee, A ; Sharif University of Technology
    2012
    Abstract
    Brushless Doubly Fed Induction Generator (BDFIG) has been recently proposed to be used in variable speed wind turbines. This paper intends to investigate the influence of certain model simplifications to obtain a reduced-order model of a wind turbine with BDFIG suitable for transient studies. To achieve this goal, small signal analysis is performed for a recently manufactured 250 kVA BDFIG to obtain system modes and their participation factors. Identifying highly damped modes, influences of neglecting dynamics of their participated states are studied through time-domain simulation in MATLAB/Simulink  

    Five-leg converter topology for wind energy conversion system with doubly fed induction generator

    , Article Renewable Energy ; Volume 36, Issue 11 , 2011 , Pages 3187-3194 ; 09601481 (ISSN) Shahbazi, M ; Poure, P ; Saadate, S ; Zolghadri, M. R ; Sharif University of Technology
    Abstract
    In this paper, application of a five-leg converter in Doubly Fed Induction Generator (DFIG) for Wind Energy Conversion Systems (WECS) is investigated. The five-leg structure and its PWM control are studied and performances are compared with the classical six-leg topology. The main drawback of five-leg converter with respect to the six-leg back-to-back converter is the need to increase the dc-link voltage for the same operation point, i.e. the same powers in case of WECS. So, different methods for the reduction of the required dc-link voltage in the five-leg case are studied. The five-leg converter is used to replace the conventional six-leg one, with the same ability. For the performance... 

    FPGA-based fault tolerant scheme with reduced extra-sensor number for WECS with DFIG

    , Article Proceedings - ISIE 2011: 2011 IEEE International Symposium on Industrial Electronics, 27 June 2011 through 30 June 2011 ; 2011 , Pages 1595-1601 ; 9781424493128 (ISBN) Shahbazi, M ; Gaillard, A ; Poure, P ; Zolghadri, M. R ; Sharif University of Technology
    2011
    Abstract
    Fast fault detection and converter reconfiguration is necessary for fault tolerant doubly fed induction generator (DFIG) in wind energy conversion systems (WECS) to prevent further damage and to make possible the continuity of service. Extra sensors are needed in order to detect the faults rapidly. In this paper, a very fast FPGA-based fault detection scheme is presented that minimizes the number of additional voltage sensors. A fault tolerant converter topology for this application is studied. Control and fault detection system are implemented on a single FPGA and Hardware in the Loop experiments are performed to evaluate the proposed detection scheme, the digital controller and the fault... 

    Influence of different series dynamic resistors on low-voltage ride-through of brushless doubly fed induction generator

    , Article Electric Power Components and Systems ; Volume 43, Issue 8-10 , 2015 , Pages 995-1005 ; 15325008 (ISSN) Tohidi, S ; Oraee, H ; Zolghadri, M. R ; Tavner, P. J ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    The brushless doubly fed induction generator has been proposed for use in wind turbines as a more reliable alternative to the more commonly used doubly fed induction generator. To realize the commercial promises of the brushless doubly fed induction generator in this role, it must meet the existing grid connection codes, particularly with respect to low-voltage ride-through. In this article, the application of series dynamic resistors is proposed to enhance brushless doubly fed induction generator low-voltage ride-through capability, and the required analysis is provided. Three locations for series dynamic resistors are suggested in the brushless doubly fed induction generator circuit and... 

    A control scheme to enhance low voltage ride-through of brushless doubly-fed induction generators

    , Article Wind Energy ; November , 2015 ; 10954244 (ISSN) Tohidi, S ; Oraee, H ; Zolghadri, M. R ; Rahimi, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2015
    Abstract
    The use of brushless doubly-fed induction generator has been recently proposed for wind turbines because of its variable speed operation with fractional size converter without the need to brush and slip ring. This paper introduces a control scheme to improve low voltage ride-through capability of doubly-fed induction generator considering grid code requirements. The proposed control strategy is based on analysis of flux linkages and back electromotive forces and intends to retain the control-winding current below the safety limit (typically 2pu) during severe voltage dips. The time-domain simulations validate effectiveness of the proposed scheme to protect the converter against failure as...