Loading...
Search for: dissolution
0.009 seconds
Total 104 records

    Artificial neural network modeling of Pt/C cathode degradation in pem fuel cells

    , Article Journal of Electronic Materials ; Volume 45, Issue 8 , 2016 , Pages 3822-3834 ; 03615235 (ISSN) Maleki, E ; Maleki, N ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    Use of computational modeling with a few experiments is considered useful to obtain the best possible result for a final product, without performing expensive and time-consuming experiments. Proton exchange membrane fuel cells (PEMFCs) can produce clean electricity, but still require further study. An oxygen reduction reaction (ORR) takes place at the cathode, and carbon-supported platinum (Pt/C) is commonly used as an electrocatalyst. The harsh conditions during PEMFC operation result in Pt/C degradation. Observation of changes in the Pt/C layer under operating conditions provides a tool to study the lifetime of PEMFCs and overcome durability issues. Recently, artificial neural networks... 

    Forecasting models for flow and total dissolved solids in Karoun river-Iran

    , Article Journal of Hydrology ; Volume 535 , 2016 , Pages 148-159 ; 00221694 (ISSN) Salmani, M. H ; Salmani Jajaei, E ; Sharif University of Technology
    Abstract
    Water quality is one of the most important factors contributing to a healthy life. From the water quality management point of view, TDS (total dissolved solids) is the most important factor and many water developing plans have been implemented in recognition of this factor. However, these plans have not been perfect and very successful in overcoming the poor water quality problem, so there are a good volume of related studies in the literature. We study TDS and the water flow of the Karoun river in southwest Iran. We collected the necessary time series data from the Harmaleh station located in the river. We present two Univariate Seasonal Autoregressive Integrated Movement Average (ARIMA)... 

    A comprehensive evaluation between the efficiency of different treatments in modifying the properties and behavior of magnesium alloys as degradable biomaterials

    , Article Materials and Corrosion ; Volume 68, Issue 9 , 2017 , Pages 995-1003 ; 09475117 (ISSN) Homayun, B ; Afshar, A ; Sharif University of Technology
    Abstract
    The addition of alloying elements to magnesium leads to microstructural refinement and improves its properties. However, this strategy is accompanied by another concurrent phenomenon − that is − intergranular segregation and the formation of secondary phases in grain boundaries, deteriorating the properties. In this work, the efficacy of two main factors on modifying the mechanical properties and corrosion behavior of Mg-4Zn-1Al-0.2Ca alloy was investigated separately: 1) dissolution of secondary phases; and 2) grain refinement. Based on the results, heat treatment of the as-cast alloy can increase the UTS from 174.4 to 213.2 MPa, decrease the corrosion current density from 81 to 49 μA/cm2,... 

    Microstructure evolution mechanism during post-bond heat treatment of transient liquid phase bonded wrought IN718 superalloy: An approach to fabricate boride-free joints

    , Article Journal of Alloys and Compounds ; Volume 723 , 2017 , Pages 84-91 ; 09258388 (ISSN) Pouranvari, M ; Ekrami, A ; Kokabi, A. H ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The microstructure of a transient liquid phase (TLP) bonded nickel base superalloy using B-containing filler metal after completion of isothermal solidification can usually be described by a eutectic-free joint centerline with extensive in-situ boride precipitation in the diffusion affected zone which in turn can affect the joint properties. Therefore, designing a proper post-bond heat treatment is needed to produce a robust joint. This paper addresses the microstructure evolution mechanism during post-bond heat treatment (PBHT) of TLP bonded wrought IN718 nickel base superalloy. PBHT at 1150 °C, which is lower than the solvus temperature of the borides, for 12 h resulted in boride-free... 

    Effects of non-isothermal annealing on microstructure and mechanical properties of severely deformed 2024 aluminum alloy

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 27, Issue 1 , 2017 , Pages 1-9 ; 10036326 (ISSN) Khani Moghanaki, S ; Kazeminezhad, M ; Sharif University of Technology
    Nonferrous Metals Society of China  2017
    Abstract
    Microstructure and mechanical properties of AA2024 after severe plastic deformation (SPD) and non-isothermal annealing were investigated. The non-isothermal treatment was carried out on the severely deformed AA2024, and the interaction between restoration and precipitation phenomena was investigated. Differential scanning calorimetry, hardness and shear punch tests illustrate that static recovery and dissolution of GPB zones/Cu–Mg co-clusters occur concurrently through non-isothermal annealing. Scanning electron microscope and electron backscatter diffraction illustrate that non-isothermal annealing of deformed AA2024 up to 250 °C promotes the particle-free regions and also particle... 

    Simulation and control of membrane reactors for catalytic reduction of dissolved oxygen from water

    , Article Canadian Journal of Chemical Engineering ; 2017 ; 00084034 (ISSN) Karegar Ghavibazoo, M ; Golmakani, A ; Hosseinipoor, S ; Rokhforouz, M. R ; Sharif University of Technology
    Wiley-Liss Inc  2017
    Abstract
    Removal of dissolved oxygen (DO) from water has gained much attention in recent decades to prevent different problems such as corrosion, bio-fouling, and performance degradation in many industries. The traditional physical and chemical methods for DO removal have found wide application in industries. However, physical methods have low efficiency and chemical methods often produce undesirable products. Therefore, catalytic reduction by hydrogen has been regarded by a variety of industries recently. In this study, catalytic reduction of DO from water is examined using membrane reactors. The mathematical model of this system is developed while considering the axial dispersion, membrane... 

    A new approach to characterize the performance of heavy oil recovery due to various gas injection

    , Article International Journal of Multiphase Flow ; 2017 ; 03019322 (ISSN) Rostami, B ; Pourafshary, P ; Fathollahi, A ; Yassin, M. R ; Hassani, K ; Khosravi, M ; Mohammadifard, M ; Dangkooban, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The performance of CO2 injection into a semi-heavy oil reservoir was investigated at reservoir conditions, using highly permeable sandstone in a complete series of PVT tests and coreflooding experiments. Analysis of involved parameters such as: injection rate, injectant type and reservoir pressure were also considered. Oil viscosity reduction and oil swelling are the most influential mechanisms of enhanced oil recovery in this process. The results demonstrated that CO2 injection would decrease the interfacial tension for the high permeable medium in the absence of capillarity, but this reduction may not improve the recovery drastically. One of the main important aspects of this work is the... 

    Ni-P/Zn-Ni compositionally modulated multilayer coatings – part 2: corrosion and protection mechanisms

    , Article Applied Surface Science ; Volume 442 , 2018 , Pages 313-321 ; 01694332 (ISSN) Bahadormanesh, B ; Ghorbani, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the deposition current density. The corrosion resistance of the deposits was studied and compared with that of monolayers of Ni-P and Zn-Ni alloys via Tafel polarization, EIS and salt spray tests. Characterization of corrosion products by means of EDS and XRD revealed more details from the corrosion mechanism of the monolayers and multilayers. The corrosion current density of Ni-P/Zn-Ni CMMCs were around one tenth of Zn-Ni monolayer. The CMMC with incomplete layers performed lower polarization resistance and higher corrosion current density compared to the CMMC with... 

    Simulation and control of membrane reactors for catalytic reduction of dissolved oxygen from water

    , Article Canadian Journal of Chemical Engineering ; Volume 96, Issue 4 , 2018 , Pages 912-925 ; 00084034 (ISSN) Karegar Ghavibazoo, M ; Golmakani, A ; Hosseinipoor, S ; Rokhforouz, M. R ; Sharif University of Technology
    Wiley-Liss Inc  2018
    Abstract
    The catalytic reduction of dissolved oxygen (DO) from water was examined using membrane reactors and a mathematical model that considers axial dispersion, membrane permeation, and chemical reaction. The model is solved in steady state mode and the effect of various parameters on the DO removal was assessed. The results of steady state mode were employed as initial conditions for solving the model in dynamic mode. The impact of operating conditions, e.g., water flow rate, DO concentration of influent water, hydrogen flow rate, and hydrogen pressure on the performance of the DO process was studied. Results of the dynamic simulation suggested that hydrogen pressure is the best option to be used... 

    A new approach to characterize the performance of heavy oil recovery due to various gas injection

    , Article International Journal of Multiphase Flow ; Volume 99 , 2018 , Pages 273-283 ; 03019322 (ISSN) Rostami, B ; Pourafshary, P ; Fathollahi, A ; Yassin, M. R ; Hassani, K ; Khosravi, M ; Mohammadifard, M ; Dangkooban, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The performance of CO2 injection into a semi-heavy oil reservoir was investigated at reservoir conditions, using highly permeable sandstone in a complete series of PVT tests and coreflooding experiments. Analysis of involved parameters such as: injection rate, injectant type and reservoir pressure were also considered. Oil viscosity reduction and oil swelling are the most influential mechanisms of enhanced oil recovery in this process. The results demonstrated that CO2 injection would decrease the interfacial tension for the high permeable medium in the absence of capillarity, but this reduction may not improve the recovery drastically. One of the main important aspects of this work is the... 

    Investigation of oxygen barrier properties of organoclay/HDPE/EVA nanocomposite films prepared using a two-step solution method

    , Article Polymer Composites ; Volume 30, Issue 6 , 2009 , Pages 812-819 ; 02728397 (ISSN) Dadfar, M. R ; Ramezani Saadat Abadi, A ; Dadfar, M. A ; Sharif University of Technology
    2009
    Abstract
    In this article, oxygen barrier properties of nanocomposite films composed of organoclay (OC), high-density polyethylene (HDPE), and ethylene vinyl acetate (EVA) copolymer have been investigated. The nanocomposite films whose EVA forms a dominant fraction were prepared using the solution method. The dispersion of the OC in the HDPE/EVA blend was improved through taking two-step procedure in the preparation of nanocomposite. First, the OC and EVA were dissolved in chloroform. Then, the resulting product, after evaporating most of the solvent, along with HDPE was dissolved in xylene. The obtained nanocomposite films underwent a number of tests in order to examine their barrier properties... 

    Thermal processing strategies enabling boride dissolution and gamma prime precipitation in dissimilar nickel-based superalloys transient liquid phase bond

    , Article Materials and Design ; Volume 182 , 2019 ; 02641275 (ISSN) Ghasemi, A ; Pouranvari, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The microstructure of dissimilar transient liquid phase bond between Hastelloy X and IN792 nickel-based superalloys is featured by lack of sufficient formation of γ′ precipitates in the bond-centerline and extensive in-situ precipitation of boride second phases in the diffusion affected zones (DAZ). This paper investigates the impact of two thermal processing strategies, using standard solution treatment and aging of IN792 (STA strategy) and using solution treatment of IN792 followed by a post-bond heat treatment utilizing solution treatment of Hastelloy X and aging treatment of IN792 (SPTA strategy) on the joint microstructure and mechanical properties. The boride precipitates in the DAZ of... 

    Phosphorus transport in intensively managed watersheds

    , Article Water Resources Research ; Volume 55, Issue 11 , 2019 , Pages 9148-9172 ; 00431397 (ISSN) Dolph, C. L ; Boardman, E ; Danesh Yazdi, M ; Finlay, J. C ; Hansen, A. T ; Baker, A. C ; Dalzell, B ; Sharif University of Technology]
    Blackwell Publishing Ltd  2019
    Abstract
    Understanding controls of P movement through watersheds are essential for improved landscape management in intensively managed regions. Here, we analyze observational data from 104 gaged river sites and 176 nongaged river sites within agriculturally dominated watersheds of Minnesota, USA, to understand the role of landscape features, land use practices, climate variability, and biogeochemical processes in total, dissolved and particulate P dynamics at daily to annual scales. Our analyses demonstrate that factors mediating P concentration-discharge relationships varied greatly across watersheds and included near-channel sediment sources, lake and wetland interception, assimilation by algal P,... 

    Modeling of reactive acid transport in fractured porous media with the Extended–FEM based on Darcy-Brinkman-Forchheimer framework

    , Article Computers and Geotechnics ; Volume 128 , December , 2020 Khoei, A. R ; Salehi Sichani, A ; Hosseini, N ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, a fully coupled numerical model is developed based on the X-FEM technique to simulate the reactive acid transport in fractured porous media. The porous medium consists of the solid and fluid phases, in which the fluid phase includes water and acid components, and chemical reactions can be occurred between acid component and solid phase at the solid–fluid interfaces. The governing equations include the mass and momentum conservation laws for fluid phase, and the advective–diffusive transport of acid component that must be solved to obtain the primary unknowns, including the pore fluid pressure, acid concentration, and fluid velocity vector. Applying the... 

    Dissolution and conformational behavior of functionalized cellulose chains in the bulk, aqueous and non-aqueous media: A simulation study

    , Article Carbohydrate Research ; Volume 496 , October , 2020 Koochaki, A ; Moghbeli, M. R ; Rasouli, S ; Gharib Zahedi, M. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the present study, we employ all-atom molecular dynamics simulations to investigate the dynamic behaviors and structural properties of the native and modified cellulose chains in the bulk, aqueous, and organic media. Particular attention has been directed to the role of different hydrophobic and hydrophilic functional groups as linear and branched aliphatic and also cyclic pendent groups on the solubility and packing of the cellulose chain. The various properties related to density profile, mean squared displacement, intramolecular entropy, radius of gyration, and radial distribution function were calculated. The results showed that the chain tendency toward crystallinity decreased when... 

    Effect of gas impurity on the convective dissolution of CO2 in porous media

    , Article Energy ; Volume 199 , May , 2020 Mahmoodpour, S ; Amooie, M. A ; Rostami, B ; Bahrami, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Growing needs for energy and the essential role of fossil fuels in energy market require attempts such as carbon dioxide (CO2) sequestration in saline aquifers to stabilize and mitigate atmospheric carbon concentrations. The possibility of co-injection of impurities along with CO2 allows for the direct disposal of flue gas and hence a significant reduction in the cost of CO2 sequestration projects by eliminating the separation process. In this study, the results of series of novel experiments in a high-pressure visual porous cell are reported, which allow for visually and quantitatively examining the dynamics of convective dissolution in brine-saturated porous media in the presence of an... 

    Elevated-temperature behaviour of LiNi0.5Co0.2Mn0.3O2 cathode modified with rGO-SiO2 composite coating

    , Article Journal of Alloys and Compounds ; Volume 843 , 2020 Razmjoo Khollari, M. A ; Khalili Azar, M ; Esmaeili, M ; Tanhaei, M ; Dolati, A ; Hosseini H, S. M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    An intense decrease in cycling performance and safety is a challenge for elevated temperature application of LiNi0.5Co0.2Mn0.3O2 (NCM) cathode material. In this paper, effect of two types of nano-coatings on improvement of elevated temperature performance of NCM cathode material has been investigated. One of the coatings contains SiO2 nanoparticles and the other one contains composite of reduced graphene oxide and SiO2 nanoparticles (rGO-SiO2). The coatings were fabricated by a facile wet chemical method. The SiO2 coated cathode material showed an excellent elevated temperature cycling stability, however, a decrease in discharge capacity and rate capability of this sample was observed. On... 

    Detailed analysis of the brine-rock interactions during low salinity water injection by a coupled geochemical-transport model

    , Article Chemical Geology ; Volume 537 , 2020 Shabani, A ; Zivar, D ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Enhanced Oil Recovery (EOR) methods have been widely used around the world to improve oil production from petroleum reservoirs. Recently, the injection of the low salinity/smart water has gained popularity among the EOR methods. Different mechanisms are believed to exist during low salinity/smart water injection, including dissolution, precipitation, and ion exchange at the rock surface. In this study, a coupled geochemical-transport model is presented for the detailed analysis and investigation of the interactions between brine, sandstone and carbonate rocks. The proposed model presents the coupling of a geochemical software (PHREEQC) and a species transport model. This coupled method makes... 

    Surface plasmon resonance of two-segmented Au-Cu nanorods

    , Article Nanotechnology ; Volume 19, Issue 41 , 2008 ; 09574484 (ISSN) Azarian, A ; Iraji Zad, A ; Dolati, A ; Ghorbani, M ; Sharif University of Technology
    2008
    Abstract
    Two-segmented gold-copper nanorods were electrodeposited inside the pores of polycarbonate track-etched membranes from two separate solutions. The PCT membranes were dissolved in dichloromethane (CH2Cl2) and the solvent was replaced by methanol solution. Optical absorption spectra of two-segmented Au-Cu nanorods dispersed in methanol showed two peaks which were related to the transverse mode of copper and the longitudinal mode of gold. By increasing the length of the gold segment, when the total length of both metals was fixed at 1 μm, the copper and gold peaks shifted to the blue and red wavelengths, respectively. We observed that the wavelengths of the extinction peaks are not in good... 

    Thermochemical growth of Mn-doped CdS nanoparticles and study of luminescence evolution

    , Article Nanotechnology ; Volume 19, Issue 22 , 2008 ; 09574484 (ISSN) Marandi, M ; Taghavinia, N ; Sedaghat, Z ; Iraji Zad, A ; Mahdavi, S. M ; Sharif University of Technology
    2008
    Abstract
    We report a new method of growing Mn-doped CdS (CdS:Mn) nanoparticles in an aqueous solution at boiling temperature. The idea is to use precursors that react only at high temperature, in order to gain crystalline luminescent nanoparticles. CdSO4, Mn(NO3)2 and Na 2S2O3 were used as the precursors, and thioglycerol was employed as the capping agent and also the reaction catalyst. Na2S2O3 is thermally sensitive and it releases S2- ions upon heating. The CdS:Mn nanoparticles obtained are about 4 nm in size and show both cubic and hexagonal crystalline phases with a ratio of 35% to 65%. The luminescence of nanoparticles contains a peak at 580 nm, which is related to Mn2+ ions. Prolonged reaction...