Loading...
Search for: deformation
0.014 seconds
Total 1110 records

    A note on "barrel Compression Test": A method for evaluation of friction

    , Article Computational Materials Science ; Volume 49, Issue 2 , August , 2010 , Pages 435-438 ; 09270256 (ISSN) Solhjoo, S ; Sharif University of Technology
    2010
    Abstract
    Friction plays an important role in metal forming operations. Therefore, many techniques are developed for evaluation of friction in large deformation processes. Among them the "Barrel Compression Test" (BCT) is a very simple method that quantitatively evaluates the constant friction factor, m, simply by compressing a cylindrical specimen. BCT was analyzed by Avitzur [B. Avitzur, Metal Forming Processes and Analysis, McGraw-Hill, 1968] using the upper bound theory. Ebrahimi et al. [R. Ebrahimi, A. Najafizadeh, J. Mater. Process. Technol. 152 (2004) 136-143] suggested a method in order to make Avitzur's mathematical results applicable. However, they made an assumption in their work which... 

    Validity of cauchy-born hypothesis in multi-scale modeling of plastic deformations

    , Article International Journal of Solids and Structures ; 2017 ; 00207683 (ISSN) Khoei, A. R ; Jahanshahi, M ; Toloui, G ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The Cauchy-Born (CB) hypothesis has been widely used in multi-scale modeling of crystalline nano-structures. The violation of CB hypothesis in stress space and the transition to plasticity, which is equivalent to the violation of CB hypothesis in strain space, are generally confused and it becomes crucial to differentiate between the two distinct phenomena; the violation of the former usually occurs at high values of stress and at regions where the surface effects are manifest while the violation of the latter occurs at low stresses when the material loses its strength to tolerate the applied loading. In this paper, a novel technique is developed to investigate the validity of CB hypothesis... 

    A finite deformation viscoelastic-viscoplastic constitutive model for self-healing materials

    , Article Smart Materials and Structures ; Volume 25, Issue 12 , 2016 , Pages 1DUMMY- ; 09641726 (ISSN) Shahsavari, H ; Naghdabadi, R ; Baghani, M ; Sohrabpour, S ; Sharif University of Technology
    Institute of Physics Publishing  2016
    Abstract
    In this paper, employing the Hencky strain, viscoelastic-viscoplastic response of self-healing materials is investigated. Considering the irreversible thermodynamics and using the effective configuration in the Continuum Damage-Healing Mechanics (CDHM), a phenomenological finite strain viscoelastic-viscoplastic constitutive model is presented. Considering finite viscoelastic and viscoplastic deformations, total deformation gradient is multiplicatively decomposed into viscoelastic and viscoplastic parts. Due to mathematical advantages and physical meaning of Hencky strain, this measure of strain is employed in the constitutive model development. In this regard, defining the damage and healing... 

    Effect of temperature on microstructural evolution and subsequent enhancement of mechanical properties in a backward extruded magnesium alloy

    , Article International Journal of Advanced Manufacturing Technology ; 2017 , Pages 1-12 ; 02683768 (ISSN) Azimi, M ; Mirjavadi, S. S ; Salandari Rabori, A ; Sharif University of Technology
    Abstract
    The capability of backward extrusion (BE) method was assessed to achieve modified structures in AZ80 magnesium alloy. At first, 3D-Deform was employed to simulate the deformation flow through the deformed cup which gives an evidence from the flow behavior of the material. The material was processed via BE method at various temperatures of 250, 350, and 450 °C. Metallographic investigations were conducted in three different regions of the BE-processed cup (wall, bottom, and flow channel). The main feature observed at the wall of the BE cup was the presence of mechanical twins, the frequency of which was reduced by raising the process temperature. The flow localization in the form of shear... 

    Validity of cauchy–born hypothesis in multi-scale modeling of plastic deformations

    , Article International Journal of Solids and Structures ; Volume 115-116 , 2017 , Pages 224-247 ; 00207683 (ISSN) Khoei, A. R ; Jahanshahi, M ; Toloui, G ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The Cauchy–Born (CB) hypothesis has been widely used in multi-scale modeling of crystalline nano-structures. The violation of CB hypothesis in stress space and the transition to plasticity, which is equivalent to the violation of CB hypothesis in strain space, are generally confused and it becomes crucial to differentiate between the two distinct phenomena; the violation of the former usually occurs at high values of stress and at regions where the surface effects are manifest while the violation of the latter occurs at low stresses when the material loses its strength to tolerate the applied loading. In this paper, a novel technique is developed to investigate the validity of CB hypothesis... 

    A thermodynamically-consistent large deformation theory coupling photochemical reaction and electrochemistry for light-responsive gels

    , Article Journal of the Mechanics and Physics of Solids ; Volume 116 , July , 2018 , Pages 239-266 ; 00225096 (ISSN) Dehghany, M ; Zhang, H ; Naghdabadi, R ; Hu, Y ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Gels are composed of crosslinked polymer network and solvent molecules. When the main chain network is incorporated with functional groups that can undergo photo-chemical reaction upon light irradiation, the gel becomes light-responsive. Under irradiation, the photosensitive groups may undergo photo-ionization process and generate charges that are attached to the main chain or diffuse into the solvent. The newly generated ions disturb the osmotic balance of the gel medium. As a result, water molecules and mobile ions are driven into or out of the network to compensate the osmotic imbalance, which eventually leads to macroscopic swelling or shrinking of the gel. In this work, we develop a... 

    Effect of temperature on microstructural evolution and subsequent enhancement of mechanical properties in a backward extruded magnesium alloy

    , Article International Journal of Advanced Manufacturing Technology ; Volume 95, Issue 9-12 , 2018 , Pages 3155-3166 ; 02683768 (ISSN) Azimi, M ; Mirjavadi, S. S ; Salandari-Rabori, A ; Sharif University of Technology
    Springer London  2018
    Abstract
    The capability of backward extrusion (BE) method was assessed to achieve modified structures in AZ80 magnesium alloy. At first, 3D-Deform was employed to simulate the deformation flow through the deformed cup which gives an evidence from the flow behavior of the material. The material was processed via BE method at various temperatures of 250, 350, and 450 °C. Metallographic investigations were conducted in three different regions of the BE-processed cup (wall, bottom, and flow channel). The main feature observed at the wall of the BE cup was the presence of mechanical twins, the frequency of which was reduced by raising the process temperature. The flow localization in the form of shear... 

    A hybrid model on severe plastic deformation of copper

    , Article Computational Materials Science ; Volume 44, Issue 4 , 2009 , Pages 1107-1115 ; 09270256 (ISSN) Hosseini, E ; Kazeminezhad, M ; Sharif University of Technology
    2009
    Abstract
    A hybrid model based on the flow function and dislocation cell structure model by considering the Taylor assumption is utilized to model the dislocation structure evolution, cell size and mechanical properties of OFHC in severe plastic deformation. Here, the ECAP is chosen as a process of severe plastic deformation. In this study, the model is modified by taking the value of cell size coefficient as a function of strain and considering two different values of dynamic recovery coefficients of cell walls and cell interiors. These modifications lead to achieve the more accurate modeling results. From the flow function the strain rate distribution are achieved and then using the model the... 

    An eulerian multiplicative constitutive model of finite elastoplasticity

    , Article European Journal of Mechanics, A/Solids ; Volume 28, Issue 6 , 2009 , Pages 1088-1097 ; 09977538 (ISSN) Heidari, M ; Vafai, A ; Desai, C ; Sharif University of Technology
    2009
    Abstract
    An Eulerian rate-independent constitutive model for isotropic materials undergoing finite elastoplastic deformation is formulated. Entirely fulfilling the multiplicative decomposition of the deformation gradient, a constitutive equation and the coupled elastoplastic spin of the objective corotational rate therein are explicitly derived. For the purely elastic deformation, the model degenerates into a hypoelastic-type equation with the Green-Naghdi rate. For the small elastic- and rigid-plastic deformations, the model converges to the widely-used additive model where the Jaumann rate is used. Finally, as an illustration, using a combined exponential isotropic-nonlinear kinematic hardening... 

    Dislocation structure and strength evolution of heavily deformed tantalum

    , Article International Journal of Refractory Metals and Hard Materials ; Volume 27, Issue 3 , 2009 , Pages 605-610 ; 02634368 (ISSN) Hosseini, E ; Kazeminezhad, M ; Sharif University of Technology
    2009
    Abstract
    A unified model composed of the flow function model, dislocation model and Taylor theory is used to investigate the evolution of dislocation density, cell size, and strength of tantalum during ECAP process. From the flow function model, strain and strain rate distributions are achieved and then using a modified version of three-dimensional ETMB model, the dislocation density, cell size, and strength are predicted. The predicted dislocation density, cell size, and strength are compared with the experimental data and a remarkable agreement is obtained. In addition, the effect of dynamic recovery on the strength of the processed tantalum is modeled and compared with other materials. © 2008... 

    Nodal-based three-dimensional discontinuous deformation analysis (3-D DDA)

    , Article Computers and Geotechnics ; Volume 36, Issue 3 , 2009 , Pages 359-372 ; 0266352X (ISSN) Beyabanaki, S. A. R ; Jafari, A ; Omid Reza Biabanaki, S ; Ronald Yeung, M ; Sharif University of Technology
    2009
    Abstract
    This paper presents a new numerical model that can add a finite element mesh into each block of the three-dimensional discontinuous deformation analysis (3-D DDA), originally developed by Gen-hua Shi. The main objectives of this research are to enhance DDA block's deformability. Formulations of stiffness and force matrices in 3-D DDA with conventional Trilinear (8-node) and Serendipity (20-node) hexahedral isoparametric finite elements meshed block system due to elastic stress, initial stress, point load, body force, displacement constraints, inertia force, normal and shear contact forces are derived in detail for program coding. The program code for the Trilinear and Serendipity hexahedron... 

    A new computational algorithm for contact friction modeling of large plastic deformation in powder compaction processes

    , Article International Journal of Solids and Structures ; Volume 46, Issue 2 , 2009 , Pages 287-310 ; 00207683 (ISSN) Khoei, A. R ; Biabanaki, S. O. R ; Vafa, A. R ; Yadegaran, I ; Keshavarz, Sh ; Sharif University of Technology
    2009
    Abstract
    In this paper, the large deformation frictional contact of powder forming process is modeled based on a new computational algorithm by imposing the contact constraints and modifying the contact properties of frictional slip. A simple and efficient numerical algorithm is presented for imposing the contact constraints and frictional contact properties based on the node-to-surface contact technique to simulate the large deformation contact problem in the compaction process of powder. The Coulomb friction law is used to simulate the friction between the rigid punch and the workpiece by the use of penalty approach. A double-surface cap plasticity model is employed together with the nonlinear... 

    The effects of intermediate and post-annealing phenomena on the mechanical properties and microstructure of constrained groove pressed copper sheet

    , Article Materials Science and Engineering A ; Volume 515, Issue 1-2 , 2009 , Pages 162-168 ; 09215093 (ISSN) Rafizadeh, E ; Mani, A ; Kazeminezhad, M ; Sharif University of Technology
    2009
    Abstract
    Commercial purity copper sheets were subjected to a severe plastic deformation technique known as constrained groove pressing (CGP). The effect of pass number, intermediate and post-annealing on the yield strength, hardness and final microstructure of the copper specimens were investigated. The initial pass increases the strength much more than the subsequent passes. Intermediate and post-annealing up to 300 °C cannot change the mechanical properties significantly and even in some cases improve the strength and hardness while reduce the hardness inhomogeneity. Microstructure after post-annealing at elevated temperatures shows abnormal grain growth. © 2009 Elsevier B.V. All rights reserved  

    Nonlinear plastic modeling of materials based on the generalized strain rate tensor

    , Article ASME 2008 Pressure Vessels and Piping Conference, PVP2008, Chicago, IL, 27 July 2008 through 31 July 2008 ; Volume 3 , July , 2008 , Pages 499-505 ; 0277027X (ISSN); 9780791848265 (ISBN) Ghavam, K ; Naghdabadi, R ; Pressure Vessels and Piping ; Sharif University of Technology
    2008
    Abstract
    In this paper, a method for modeling of elastic-plastic hardening materials under large deformations is proposed. In this model the generalized strain rate tensor is used. Such a tensor is obtained on the basis of the method which was introduced by the authors. Based on the generalized strain rate tensor, a flow rule, a Prager-type kinematic hardening equation and a kinematic decomposition is proposed and the governing equations for such materials are obtained. As an application, the governing equations for the simple shear problem are solved and some results are compared with those in the literature. Copyright © 2008 by ASME  

    Free-edge stresses in general composite laminates

    , Article International Journal of Mechanical Sciences ; Volume 50, Issue 10-11 , 2008 , Pages 1435-1447 ; 00207403 (ISSN) Nosier, A ; Maleki, M ; Sharif University of Technology
    2008
    Abstract
    In the present study, by starting from the reduced form of elasticity displacement field for a long flat laminate, an analytical method is developed in order to accurately calculate the interlaminar stresses near the free edges of generally laminated composite plates under extension. The constant parameter appearing in the reduced displacement field, which describes the global rotational deformation of a laminate, is appropriately obtained by employing an improved first-order shear deformation theory. The accuracy and effectiveness of the proposed first-order theory are verified by means of comparison with the results of Reddy's layerwise theory as a three-dimensional benchmark. Reddy's... 

    3D modeling of large elasto-plastic deformation via the extended finite element method

    , Article 9th International Conference on Computational Plasticity: Fundamentals and Applications, COMPLAS IX, Barcelona, 5 September 2007 through 7 September 2007 ; Issue PART 2 , 2007 , Pages 894-897 ; 9788496736290 (ISBN) Khoei, A. R ; Biabanaki, S. O. R ; Anahid, M ; Sharif University of Technology
    2007
    Abstract
    In this paper, the extended finite element method is presented for large elasto-plastic deformation in 3D solid mechanics problems. The X-FEM computational algorithm is presented in the framework of Lagrangian description in order to model the arbitrary discontinuities in large deformations. The discontinuity between two bodies is modeled by using the X-FEM technique and applying a modified level set enrichment function. In order to simulate the nonlinear behavior of materials, the Lagrangian plasticity formulation is coupled with the X-FEM technique. Finally, numerical example is analyzed to demonstrate the efficiency of the X-FEM technique in large plasticity deformations. © CIMNE 2007  

    Interlaminar stresses in antisymmetric angle-ply laminates

    , Article Composite Structures ; Volume 78, Issue 1 , 2007 , Pages 18-33 ; 02638223 (ISSN) Nosier, A ; Bahrami, A ; Sharif University of Technology
    2007
    Abstract
    Based on elasticity theory the reduced form of displacement field is developed for long antisymmertic angle-ply composite laminates subjected to extensional and/or torsional loads. Analytical solutions to the edge-effect problem of such laminates under a uniform axial strain are developed using the first-order shear deformation theory of plates and Reddy's layerwise theory. For a special set of boundary conditions an elasticity solution is presented to verify the validity and accuracy of the layerwise theory. Various numerical results are then developed within the layerwise theory for the interlaminar stresses through the thickness and across the interfaces of antisymmetric angle-ply... 

    Deformation and creep characteristics of AA7075-T76 at elevated temperatures

    , Article Journal of Materials Engineering and Performance ; Volume 31, Issue 9 , 2022 , Pages 7586-7595 ; 10599495 (ISSN) Safarloo, S ; Serajzadeh, S ; Sharif University of Technology
    Springer  2022
    Abstract
    In this work, deformation behavior as well as creep and cavitation of AA7075-T76 were studied. The as-received plate was first stabilized utilizing solution treatment followed by two-stage artificial aging at 120 and 180 °C. Then, tensile tests were carried out on the aged-alloy in the temperature range between 120 and 250 °C under strain rates of 0.0005 and 0.005 s−1. Furthermore, stress-controlled creep tests were performed at temperatures varying between 120 and 210 °C at stresses ranging from 130 to 250 MPa. Microstructural evolution was then conducted to assess the microstructural changes and growth of cavities during creep employing optical metallography and scanning electron... 

    High temperature deformation and processing map of a NiTi intermetallic alloy

    , Article Intermetallics ; Volume 19, Issue 10 , October , 2011 , Pages 1399-1404 ; 09669795 (ISSN) Morakabati, M ; Aboutalebi, M ; Kheirandish, S ; Karimi Taheri, A ; Abbasi, S. M ; Sharif University of Technology
    2011
    Abstract
    The deformation behavior of a 49.8 Ni-50.2 Ti (at pct) alloy was investigated using the hot compression test in the temperature range of 700 °C-1100 °C, and strain rate of 0.001 s-1 to 1 s-1. The hot tensile test of the alloy was also considered to assist explaining the related deformation mechanism within the same temperature range and the strain rate of 0.1 s-1. The processing map of the alloy was developed to evaluate the efficiency of hot deformation and to identify the instability regions of the flow. The peak efficiency of 24-28% was achieved at temperature range of 900 °C-1000 °C, and strain rates higher than 0.01 s -1 in the processing map. The hot ductility and the deformation... 

    Hierarchical Multiscale Modeling in Large and Plastic Deformations

    , M.Sc. Thesis Sharif University of Technology Sarkari Khorrami, Mohammad (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    In this study, the hierarchical multiscale method is presented to model macro-scale materials with considering large and plastic deformations. Since the classic methods such as continuum mechanics were unable to model defects such as dislocations, voids, and etc. at nano scale. Also, the molecular dynamics methods have high computational costs; hence, recearchers try to develop multiscale methods in order to utilize them. Multiscale modeling in which two scales are considered and some information be transferred from fine scale to coarse scale. In this work, the coarse scale is modeled by finite element method (FEM) and the fine scale is analysed by molecular dynamics (MD). In fact, two...