Loading...
Search for: deformation
0.01 seconds
Total 1109 records

    Multi directional forging of 2024 Al alloy after different heat treatments: Microstructural and mechanical behavior

    , Article Transactions of the Indian Institute of Metals ; 2016 , Pages 1-13 ; 09722815 (ISSN) Asadi, S ; Kazeminezhad, M ; Sharif University of Technology
    Springer India 
    Abstract
    Improvement of mechanical properties and microstructure of 2024 aluminum alloy by performing a severe plastic deformation method, called multidirectional forging (MDF), and heat treatment was the aim of this research. In this work, the effects of different heat treatments such as annealing, solid solution, peak ageing and over ageing before MDF on mechanical properties and microstructure of the alloy were studied. Microstructure evolution during severe plastic deformation was considerably affected by the precipitates and non-shearable particles. On the other hand, the severe plastic deformation had different effects on precipitates in the microstructure. Fragmentation, scattering and... 

    Rapid annealing of severely deformed low carbon steel in subcritical temperature range

    , Article Metals and Materials International ; Volume 23, Issue 5 , 2017 , Pages 984-993 ; 15989623 (ISSN) Ghiabakloo, H ; Kazeminezhad, M ; Sharif University of Technology
    Abstract
    A low-carbon steel sheet containing 0.05 C, 0.203 Mn, and 0.0229 Si (all in wt%) was rapidly annealed in a temperature range of 300 °C to 600 °C after severe plastic deformation by using constrained groove pressing (CGP) technique. Microstructure evolution was investigated by scanning electron and optical microscopes. Mechanical properties were evaluated by hardness measurements and shear punch test. The results showed a thermal stability up to 400 °C where recrystallization did not occur in the specimens even after 7200 s. This thermal stability is in agreement with previously reported results of conventional annealing of the same steel after CGP. However, annealing at 500 °C and 600 °C led... 

    Multi directional forging of 2024 Al alloy after different heat treatments: microstructural and mechanical behavior

    , Article Transactions of the Indian Institute of Metals ; Volume 70, Issue 7 , 2017 , Pages 1707-1719 ; 09722815 (ISSN) Asadi, S ; Kazeminezhad, M ; Sharif University of Technology
    Abstract
    Improvement of mechanical properties and microstructure of 2024 aluminum alloy by performing a severe plastic deformation method, called multidirectional forging (MDF), and heat treatment was the aim of this research. In this work, the effects of different heat treatments such as annealing, solid solution, peak ageing and over ageing before MDF on mechanical properties and microstructure of the alloy were studied. Microstructure evolution during severe plastic deformation was considerably affected by the precipitates and non-shearable particles. On the other hand, the severe plastic deformation had different effects on precipitates in the microstructure. Fragmentation, scattering and... 

    Grain-Refining ability of ultra-rapid annealing for low-carbon steel: Severe plastic deformation

    , Article Materiali in Tehnologije ; Volume 51, Issue 1 , 2017 , Pages 173-177 ; 15802949 (ISSN) Mostafaei, M. A ; Kazeminezhad, M ; Sharif University of Technology
    Institute of Metals Technology  2017
    Abstract
    To study the grain-refinement ability of ultra-rapid annealing (URA), heating rates from 0.3 °C/s up to 1200 °C/s with conventional annealing and URA in the intercritical temperature range were performed on severely deformed low-carbon steel. The results show that recrystallization in conventional annealing is completed below the critical temperature of Ac1 without grain refinement. URA up to 730 °C at a heating rate of 200 °C/s causes grain refinement due to full interaction between the recrystallization and phase transformation. URAs up to 730 °C with heating rates of 600 °C/s and 1000 °C/s lead to partial grain refinement and no grain refinement, respectively. During annealing with a... 

    Analysis of flow stress up to the peak at hot deformation

    , Article Materials and Design ; Volume 30, Issue 8 , 2009 , Pages 3036-3040 ; 02641275 (ISSN) Solhjoo, S ; Sharif University of Technology
    2009
    Abstract
    A mathematical model has been developed to predict stress-strain curve up to the peak stress at hot deformation. This model is based on the linear estimation of work hardening rate-stress curve up to the peak stress. This equation is expressed in terms of peak stress, peak strain. In addition, in order to find the value of peak strain, Zenner-Hollomon parameter is modified. The predicted results are found to be in accord with the experimental flow stress curves which can be used to predict the required deformation forces in hot deformation processes. © 2008 Elsevier Ltd. All rights reserved  

    Optimization of mechanical properties of a micro alloyed steel

    , Article Materials and Design ; Volume 30, Issue 6 , 2009 , Pages 2167-2172 ; 02641275 (ISSN) Rasouli, D ; KhamenehAsl, Sh ; Akbarzadeh, A ; Daneshi, G. H ; Sharif University of Technology
    2009
    Abstract
    In this work, the effect of hot deformation temperature on microstructure and mechanical properties of micro alloyed steel was studied. The results indicated that by decreasing the deformation temperature final microstructure is refined and the volume fraction of grain boundary ferrite is increased and some pearlite is produced. Therefore both the yield strength and ultimate tensile strength is increased, while the toughness is preserved in comparison to a ferritic-pearlitic microstructure. Also a model was developed to relate the deformation condition to the volume fraction of acicular ferrite at mixed microstructure. © 2008 Elsevier Ltd. All rights reserved  

    Deformation behavior and cavitation of AA2017 at elevated temperatures

    , Article Metals and Materials International ; 2020 Vaghefi, E ; Serajzadeh, S ; Sharif University of Technology
    Korean Institute of Metals and Materials  2020
    Abstract
    In this work, deformation behavior of AA2017-T4 at elevated temperatures was studied employing uni-axial tensile and creep experiments. Tensile tests were carried out at temperatures varying 150–500 °C under different strain rates then, a combination of neural network and dynamic material modeling was utilized to construct the processing maps. Furthermore, creep experiments were conducted to assess inelastic deformation behavior of the alloy at temperatures between 150 and 225 °C and stresses in the range of 150 to 230 MPa. Microstructural evaluations were carried out for determination of microstructural changes and formation of voids and cavities within the samples. The results showed that... 

    A hypoelasto-plastic finite strain simulation of powder compaction processes with density-dependent endochronic model

    , Article International Journal of Solids and Structures ; Volume 41, Issue 22-23 , 2004 , Pages 6081-6110 ; 00207683 (ISSN) Khoei, A. R ; Bakhshiani, A ; Sharif University of Technology
    2004
    Abstract
    In this paper, a new approach is developed based on an endochronic density-dependent plasticity model for describing the isothermal deformation behavior of metal powder at low homologous temperature. As large deformations are observed in powder compaction processes, the endochronic constitutive model is presented based on large strain plasticity and an integration scheme is established for the rate constitutive equations. Endochronic constitutive equations are established based on coupling between deviatoric and hydrostatic behavior. The elastic response is stated in term of hypoelastic model and endochronic constitutive equations are stated in unrotated frame of reference. Finally, the... 

    Modelling the flow behaviour of steel under non-isothermal conditions

    , Article Materials Science and Technology ; Volume 19, Issue 8 , 2003 , Pages 1065-1069 ; 02670836 (ISSN) Serajzadeh, S ; Zebarjad, S. M ; Sharif University of Technology
    2003
    Abstract
    A mathematical model is proposed for evaluating flow behaviour under hot deformation conditions. The effects of dynamic recovery and recrystallisation as well as temperature and strain rate variations are considered in the model by means of Bergstrom's approach and the additivity rule for strain. To verify the model, hot compression tests for three grades of steel together with upsetting experiments are carried out. Comparison between experimental and theoretical results confirms the reliability of the model. © 2003 IoM Communications Ltd. Published by Maney for the Institute of Materials, Minerals and Mining  

    An endochronic plasticity model for numerical simulation of industrial powder compaction processes

    , Article Communications in Numerical Methods in Engineering ; Volume 19, Issue 7 , 2003 , Pages 521-534 ; 10698299 (ISSN) Khoei, A. R ; Bakhshiani, A ; Mofid, M ; Sharif University of Technology
    2003
    Abstract
    In this paper, the numerical modelling of powder forming process is simulated by a finite element analysis using an endochronic plasticity model. A general algorithm for the endochronic theory from the viewpoint of efficient numerical modelling is presented. Constitutive equations are established based on coupling between deviatoric and hydrostatic behaviour to the endochronic theory. Finally, the numerical schemes are examined for efficiency in the modelling of a rotational flanged-component. It is shown how the endochronic plasticity describes the behaviour of powder material from the initial stage of compaction to final stage, in which material behaves as solid metals. © 2003 John Wiley... 

    Fracture mechanism under dynamic loading of elastomer-modified polypropylene

    , Article Materials Letters ; Volume 57, Issue 18 , 2003 , Pages 2733-2741 ; 0167577X (ISSN) Zebarjad, S. M ; Lazzeri, A ; Bagheri, R ; Seyed Reihani, S. M ; Frounchi, M ; Sharif University of Technology
    2003
    Abstract
    In last decades, rubber-toughened polymer blends have been the object of considerable interest by many investigators, owing to their attractive mechanical as well as physical properties. Polypropylene (PP) is a type of polyolefin which can be toughened using rubber particles. In another paper [J. Appl. Polym. Sci., submitted for publication], the role of ethylene-propylene (EPR) particles on the deformation mechanism during tensile tests and the fracture mechanism under quasi-static loading tests has been investigated. This paper is instead focused on the role of EPR particles on the fracture mechanism under dynamic loading (impact properties) of EPR/PP blends. Blends with different weight... 

    Prediction of flow stress at hot working condition

    , Article Mechanics Research Communications ; Volume 30, Issue 1 , 2003 , Pages 87-93 ; 00936413 (ISSN) Serajzadeh, S ; Taheri, A. K ; Sharif University of Technology
    2003
    Abstract
    A mathematical model has been developed to determine flow stress at hot deformation condition. The proposed model is capable of including work softening due to dynamic phase transformations as well as the effect of temperature and strain rate variation on flow stress utilizing the additivity rule for strain. To verify the model, hot compression tests for two grades of steels has been carried out. The comparison between the experimental and theoretical results confirms the validity of the model  

    Modelling of powder compaction process using an endochronic plasticity model

    , Article Journal of Materials Processing Technology ; Volume 130-131 , 2002 , Pages 175-180 ; 09240136 (ISSN) Khoei, A. R ; Mofid, M ; Bakhshiani, A ; Sharif University of Technology
    2002
    Abstract
    In this paper, a density-dependent endochronic plasticity is presented for modelling the isothermal deformation behaviour of metal powder at low homologous temperature. As large deformation is observed in powder compaction process, a hypoelastic-plastic formulation is developed in the context of finite deformation plasticity. Constitutive equations are stated in unrotated frame of reference that greatly simplifies endochronic constitutive relation for finite plasticity. The material parameters in the constitutive model are calibrated for a tip shape component by fitting the model to reproduce data from true triaxial compression experiments. Numerical algorithm for accurate and stable... 

    An endochronic plasticity model for powder compaction processes

    , Article Journal of Materials Processing Technology ; Volume 125-126 , 2002 , Pages 138-143 ; 09240136 (ISSN) Bakhshiani, A ; Khoei, A. R ; Mofid, M ; Sharif University of Technology
    2002
    Abstract
    In this paper, the numerical modelling of the powder forming process is simulated by a finite element analysis using a density-dependent endochronic plasticity model. An endochronic constitutive model based on large strain plasticity is presented. The elastic response is stated in term of a hypoelastic model and endochronic plasticity constitutive equations are stated in the unrotated frame of reference. A general algorithm for the endochronic theory from the viewpoint of efficient numerical modelling is presented. Constitutive equations of the endochronic theory in large strain state and their numerical integration are established. An algorithmic modulus consistent with numerical... 

    Microporosity control and thermal-fatigue resistance of A319 aluminum foundry alloy

    , Article Materials Science and Engineering A ; Volume 472, Issue 1-2 , 2008 , Pages 107-114 ; 09215093 (ISSN) Arami, H ; Khalifehzadeh, R ; Akbari, M ; Khomamizadeh, F ; Sharif University of Technology
    2008
    Abstract
    The objective of this work was to gain a quantitative and qualitative understanding of the degree to which porosity influences thermal-fatigue performance and other mechanical properties of A319 aluminum casting alloy over ranges of commercial interest. The number of cycles to failure for each test was recorded. An increase in porosity content caused degradation in thermal-fatigue life and other mechanical properties. The fractographic examinations identified the pores and some intermetallics as the key microstructural features which promote damage and thermal-fatigue crack initiation sites in the specimens. Crack initiation and propagation is expected to occur sooner in regions of higher... 

    Deformation mechanism of epoxy/clay nanocomposite

    , Article European Polymer Journal ; Volume 43, Issue 3 , 2007 , Pages 782-788 ; 00143057 (ISSN) Akbari, B ; Bagheri, R ; Sharif University of Technology
    2007
    Abstract
    Polymer-layered silicate nanocomposites have been noticed recently due to their outstanding properties. The mechanical properties and deformation mechanism of epoxy/montmorillonite nanocomposites under compressive and flexural loadings were investigated. A reduction in compressive and flexural yield stress and also glass transition temperature with increasing the amount of organoclay was observed. This change in mechanical behavior of epoxy can be explained with observation of plastic deformation mechanism. The study of deformation mechanism revealed that presence of organoclay accelerates shear yielding in epoxy. Microscopic evaluation illustrated that nanoparticles in this system act as... 

    A study on flow behavior of A-286 superalloy during hot deformation

    , Article Materials Chemistry and Physics ; Volume 101, Issue 1 , 2007 , Pages 153-157 ; 02540584 (ISSN) Salehi, A. R ; Serajzadeh, S ; Yazdipour, N ; Sharif University of Technology
    2007
    Abstract
    The hot deformation behavior of A-286 superalloy has been characterized using hot compression experiments in the temperatures between 1000 and 1100 °C and strain rates varying between 0.001 and 0.1 s-1. In addition, hot workability of this alloy has been analyzed by employing flow-localization parameter. The results show that both kinds of softening mechanism, dynamic recovery and dynamic recrystallization, occur during hot working, where at 1000 °C the main mechanism is dynamic recovery and at higher temperatures and strain rate of 0.001-0.01 s-1 dynamic recrystallization takes place. Calculations demonstrates that this alloy mainly have a good workability for the utilized deformation... 

    Corotational analysis of elastic-plastic hardening materials based on different kinematic decompositions

    , Article ASME PVP2006/ICPVT-11 Conference, Vancouver, BC, 23 July 2006 through 27 July 2006 ; Volume 2006 , 2006 ; 0277027X (ISSN) ; 0791837823 (ISBN); 9780791837825 (ISBN) Ghavam, K ; Naghdabadi, R ; Sharif University of Technology
    2006
    Abstract
    In this paper, two corotational modeling for elastic-plastic, mixed hardening materials at finite deformations are introduced. In these models, the additive decomposition of the strain rate tensor as well as the multiplicative decomposition of the deformation gradient tensor is used. For this purpose, corotational constitutive equations are derived for elastic-plastic hardening materials with the non-linear Armstrong-Frederick kinematic hardening and isotropic hardening models. As an application of the proposed constitutive modeling, the governing equations are solved numerically for the simple shear problem with different corotational rates and the stress components are plotted versus the... 

    A theoretical and experimental investigation on wire flat rolling process using deformation pattern

    , Article Materials and Design ; Volume 26, Issue 2 , 2005 , Pages 99-103 ; 02613069 (ISSN) Kazeminezhad, M ; Karimi Taheri, A ; Sharif University of Technology
    Elsevier Ltd  2005
    Abstract
    In this research the deformation of wire in flat rolling process has been investigated. A theoretical relationship has been developed to relate the reduction in height of wire to the width of contact area between the rolls and wire. This relationship depicts that the width of contact area is proportional to square root of reduction in height of wire. Using that relationship the width of contact area for wires of different diameter have been calculated and compared with the appropriate experimental data after flat rolling. Also, a relationship is developed to assess the effect of reduction in height of wire on the lateral spread in wire flat rolling process. Moreover, the effect of material... 

    Study of the effects of die geometry on deformation in the radial forging process

    , Article Journal of Materials Processing Technology ; Volume 170, Issue 1-2 , 2005 , Pages 156-163 ; 09240136 (ISSN) Ghaei, A ; Movahhedy, M. R ; Karimi Taheri, A ; Sharif University of Technology
    2005
    Abstract
    Radial forging is an open forging process used for reducing the diameters of shafts, tubes, stepped shafts and axels, and creating internal profiles for tubes such as rifling of gun barrels. Usually a mandrel is used inside a tubular workpiece to create internal profile and/or size the internal diameter, but the process can also be performed without a mandrel when workpiece geometry does not allow utilizing it or the internal surface quality is not critical. Moreover, in stepped shafts and tubes, often there is a fillet connecting two different sections. If it is possible to produce that fillet during the forging process, the process could be more cost effective. So, in this paper, four...