Loading...
Search for: shafii--mohammad-behshad
0.01 seconds
Total 68 records

    Reduce Contra Rotating Propeller (CRP)Noise Level By Improving Design Specifications

    , M.Sc. Thesis Sharif University of Technology Kheiri, Ehsan (Author) ; Abbaspour, Madjid (Supervisor) ; Shafii, Mohammad Behshad (Co-Supervisor)
    Abstract
    One of the biggest problems in improving the performance of submersible propellers is the acoustic standard in conventional propellers. Recently, new solutions in propellers geometry have been used to reduce non-cavitation noise. Designing CRP licenses is one of these methods. This research includes numerical analysis. Numerical analysis in this research solves RANS equations of flow and extraction of hydrodynamic parameters and impeller noise in Ansys software. The results of numerical hydrodynamic solution are validated by laboratory results.DTMB 4119 three-blade propeller is used for hydrodynamic and hydroacoustic validation. The solution of Lighthill equations by FW-H method is... 

    Experimental Study of Internal Forced Convection of Ferrofluid Flow in Magnetizable Porous Media

    , M.Sc. Thesis Sharif University of Technology Keshavarz Behrghani, Mohsen (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    The use of nanofluids to improve the heat transfer has a special attention in the industry. researches focus on the efficiency of heat transfer nanofluids dates back to 1998. Ferrofluids are a particular type of nanofluids which their nanoparticles have magnetic effect and heat transfer can be increased by applying magnetic field to them. In this work, thermal and hydrodynamic performance of ferromagnetic fluid which flows through a copper tube in thermal entrance region has been studied. The flow in the tube is laminar and is affected by constant heat flux. Part of the tube contains a porous medium with paramagnetic properties and porosity of 0.46. Ferrofluid is composed of F e3O4 and water... 

    Theoretical and Experimental Studies of Interaction of Laser Beam with Particulate Microflows

    , Ph.D. Dissertation Sharif University of Technology Zabetian Targhi, Mohammad (Author) ; Saeedi, Mohammad Hassan (Supervisor) ; Saeedi, Mohammad Saeed ($item.subfieldsMap.e) ; Shafii, Mohammad Behshad ($item.subfieldsMap.e)
    Abstract
    Contactless and nonintrusive methods in particulate manipulation have been considered by many investigations. Particularly the use of these methods in characterization of micro and nano flows is in the focus of interests. Laser usage in the particulate systems has been dramatically increased during the last two decades. Laser can be used either as an illustration or excitation source in these systems. So-called optical tweezers use the laser beam for particle manipulation and characterization based on the hydrodynamic interaction of the laser beam with particles. There are numerous works being conducted in the field of particulate manipulation and characterization using laser beam.Present... 

    Experimental Study and Modeling of an Organic Rankine Cycle (Orc) Using Low-Temperature Systems

    , M.Sc. Thesis Sharif University of Technology Mirnia Kolaee, Mohammad (Author) ; Shafii, Mohammad Behshad (Supervisor) ; Hajilouy Benisi, Ali (Supervisor)
    Abstract
    Increasing fossil fuel consumption has led to serious problems in energy supply and environmental issues such as global warming, air pollution, ozone depletion, and security issues. A strategy to improve energy consumption requires recycling wasted energy and preventing it from being released into the environment. A wide range of available heat sources such as heat dissipation in the transportation industry, solar heat, biomass and geothermal have low-temperature, which contain large amounts of energy but they do not have enough temperature to make them economically viable and cost-effective. Several applied technologies have been proposed to utilize these resources, among which the organic... 

    Experimental Study of Internal Forced Convection of Ferrofluid Flow in Porous Media

    , M.Sc. Thesis Sharif University of Technology Sehat, Ashkan (Author) ; Sadrhosseini, Hani (Supervisor) ; Shafii, Mohammad Behshad (Co-Advisor)
    Abstract
    The present work illustrates the results of an experimental study of ferrofluid flow in a tube subjected to a constant heat flux on its wall and filled with permeable material under the effect of magnetic field. The aim of this project is investigating the enhancement of heat transfer and obtaining a uniform temperature distribution inside the pipe. In order to achieve this, a porous medium with a porosity of 0.39 and ferrofluid with volume fractions of 0.6, 1.0 and 1.5 are used simultaneously, in the presence of magnetic field. The experiments are held for four different Reynolds numbers of 147.1, 167.3, 184.3 and 205.1. Also, four various modes of the oscillatory magnetic field are applied... 

    Visualization and Investigation of The Influence of the Connecting Channels on Flat-Plate Pulsating Heat-Pipes’ Heat-Transfer

    , M.Sc. Thesis Sharif University of Technology Ebrahimi Dehshali, Massoud (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    A desired circulatory flow in flat-plate pulsating heat-pipes may improve electronic thermal management. This desired flow can be achieved by fabricating connecting channels (CCs) to increase flow resistance in one direction. In addition, connecting channels may increase the freedom degree of fluid. In order to investigate the effect of CC, two aluminum flat plate thermal spreaders with overall size 320mm×220mm×5mm - one with CC (CC-FPHP) and one without it- were fabricated. Both of the speaders have square channels with crosssection 2mm×2.8mm. The FPHPs were charged with ethanol as working fluid with filling ratios of 35%, 50%, 65%, and 80% by volume. Performance of connecting-channels in... 

    Visualization of Flow Pattern and Experimental investigation of Thermal Performance in a FerroFluid Charged Pulsating Heat Pipe

    , M.Sc. Thesis Sharif University of Technology Dayanim, Pantea (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Nowadays, there is rapid development of practical engineeringsolutions to a multitude ofheating problems. Heat generated inmicro-devices used in manufacturing and electronics require specialsolutions. Pulsating Heat Pipes (PHPs) are novel and efficient technology in the field of heat transfer and previous researches show that using ferrofluid (magnetic nanofluid) in Pulsating Heat Pipes (PHPs) enhances the thermal performance in comparison with the case of distilled water under certain conditions by applying magnetic fields and the performance is dramatically improved at horizontal heating mode. In this research an experimental setup for visualizing two phase flows in a flat-plate Pulsating... 

    Visualization of Flow Pattern and Experimental Investigation of Thermal Performance of Pulsating Heat Pipe with Proposed Fluid

    , M.Sc. Thesis Sharif University of Technology Gandomkar, Amir Reza (Author) ; Saeedi, Mohammad Hassan (Supervisor) ; Shafii, Mohammad Behshad ($item.subfieldsMap.e)
    Abstract
    Pulsating heat pipe (PHP) is a two-phase device for the means of transferring high heat fluxes and is used extensively for the electronic cooling. In this study the different flow regimes in PHP with different fluids have been investigated. In this research, 3 different fluids including: Pure fluids, Ferro-fluid and surfactant solution with %50 filling ratio have been used. For ferro-fluid, 5 different concentrations and 3 type of magnetic fields have been operated in 2 different heat pipes. Results show that ferrofluid is more stable in Pyrex made-heat pipe for long period of time and no magnet mode has the best thermal performance due to high conductivity of fluid. In copper made-heat pipe... 

    Modeling and Heat Management in Polymer Electrolyte Membrane Fuel Cell Using Heat pipes for CHP Applications

    , M.Sc. Thesis Sharif University of Technology Tahmasbi, Amir Abbas (Author) ; Roshandel, Ramin (Supervisor) ; Shafii, Mohammad Behshad (Co-Advisor)
    Abstract
    Fuel cell-based CHP systems for distributed residential power generation represent an interesting alternative to traditional thermoelectric plants. This is mainly due to the high efficiency obtainable in the production of electricity and heat in a decentralized, quiet and environmental friendly way. The current thesis focuses on the development, in Matlab_Simulink environment, of a complete dynamic model of a residential cogenerative (CHP) energy system consisting of the Proton Exchange Membrane fuel cell (PEMFC), in two scenarios. The first scenario emphasizes on use of fan and usual Heat Exchanger for cooling of Proton membrane fuel cell and conveying generated heat in PEM fuel cell to... 

    Modeling Micro Combined Heat and Power System

    , M.Sc. Thesis Sharif University of Technology Gholizadeh Touchaei, Ali (Author) ; Saidi, Mohammad saeid (Supervisor) ; Shafii, Mohammad Behshad (Supervisor) ; Saeedi, Mohammad Hassan (Supervisor)
    Abstract
    Micro combined heat and power (MCHP) system is one of the most worldwide considered energy saving with high total efficiency systems. This research presents the application of MCHP to small scale users such as residential or light commercial buildings. Initially, the available technology in micro scale that can be used as an energy generator has been specified and categorized. Since then, by using the overall energy purchased cost by households assuming the energy carriers are kerosene, gas and electricity, total demand has been determined considering that the electricity expenses showing the use of electric appliances and the gas expenses expressing the cost of domestic hot water and... 

    Methematical Modeling of Steady State Operation of A Loop Heat Pipe

    , M.Sc. Thesis Sharif University of Technology Mostafazade Abolmaali, Ali (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Loop heat pipe (LHP) is a two phase heat transfer device that is mostly used in cooling spacecrafts facilities. In this research a novel LHP is studied analytically and its steady state operating characteristics is analyzed in a one dimensional approach with heat transfer and pressure drop correlations. The novel LHP has a new arrangement in evaporator and reservoir configuration in comparison with conventional LHPs, which results in a different energy and fluid flow. In addition, the novel LHP has a new mechanism for acive control of working temperature. In modeling the proposed LHP the fluid and energy flows are first determined, then proper correltaions for calculationg each energy flow... 

    Design and Fabrication of a Ferrofluidic Miniature Pump

    , Ph.D. Dissertation Sharif University of Technology Ashouri, Majid (Author) ; Shafii, Mohammad Behshad (Supervisor) ; Moosavi, Ali (Supervisor)
    Abstract
    This thesis presents the prototype design and fabrication of magnetically actuated miniature pumps which utilize self-sealing capability of ferrofluid-covered permanent magnets in both pumping and valving mechanisms. The contactless external actuation feature of the design enables integration of the pump with other PMMA-based microfluidic systems with low cost and disposability. The body of the 1st fabricated prototype pump consists of three nozzle/diffuser elements and two pumping chambers connected to the ends of a flat-wall pumping cylinder. A cylindrical permanent magnet placed inside the pumping cylinder acts as a piston which reciprocates by using an external magnetic actuator driven... 

    Design and Fabrication of a Novel Mercury Micropump Actuated Electeromagneticaly

    , M.Sc. Thesis Sharif University of Technology Karmozdi, Mohsen (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Considering the advantages and disadvantages of reported micropumps, we aimed to introduce a novel idea to diminish the disadvantages and promote the advantages of PiezoElectric micropumps. This novel idea operates based on a mercury slug actuation in a microchannel. This cyclic motion of the mercury slug which is similar to a piston, push the fluid in the microchannel and pump the flow. However, to bring this idea into the practice, a control system must be designed. This system contains: LABVIEW code, DAQ board & a switching Board. The pattern of actuating mercury is drawn in LABVIEW. DAQ Board produces electrical signals according to LABVIEW code. Switching board will transform the... 

    Design and Fabrication of a Fluid Oscillation Micro-Power Generator in a Pulsating Heat Pipe and its Performance Experimental and Theoretical Investigation

    , M.Sc. Thesis Sharif University of Technology Zia Oleslami, Naser (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Pulsating heat pipes have been more studied in recent two decades as effective tools in dissipating waste heat from electronic components. Due to oscillating fluid flow model, these tubes have the potential of converting waste energy to power. This research presents a system that makes this potential to act. In this system, the oscillating slug-plug fluid flow pattern in an open-looped pulsating heat pipe makes a permanent magnet which is levitated in Ferrofluid to vibrate in an electromagnetic vibration-based generator in order to induce electro motive force. The fluid flow regime in pulsating heat pipe has been simulated numerically with finite element scheme. The model results for fluid... 

    Design and Study of a Resistive Pulse Sensing System with a Tunable Pore

    , M.Sc. Thesis Sharif University of Technology Shoghi Tekmedash, Mohammad (Author) ; Taghipoor, Mojtaba (Supervisor) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Over the last few years, exploiting particle sensing systems for micro-nanoparticles has grabbed much attention. Attaining the physical properties of particles using resistive pulse sensing has been one of the utmost applicable methods of sensing particles. Pores are pivotal elements of systems based on resistive pulse sensing. Two electrodes are placed at both sides of the pore, filling the containers with an electrolyte solution. Pulses of particle translocation across the pore can be recorded by applying a voltage across the electrodes. In more developed versions of resistive pulse sensing systems, pore size is tunable to attain polydisperse particles within a dispersion. In subsequent... 

    Design and Fabrication of a Solar Still Equipped with Latent Heat Storage System and Heat Pipes

    , M.Sc. Thesis Sharif University of Technology Faegh, Meysam (Author) ; Shafii, Mohammad Behshad (Supervisor)

    Design, Manufacture, and Investigation of the Desalination System Using Direct Absorption Solar Collector with Organic Colloids and External Condenser

    , M.Sc. Thesis Sharif University of Technology Ebrahimpour, Benyamin (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    The use of nanofluids for direct absorption of solar irradiance to produce freshwater has received much attention. Water-based nanofluids include metals, metal oxides, and nanocarbon-based fluids, which increase collector efficiency. On the other hand, the production cost of nanofluids is high, and when discharging the brine after the desalination process, these nanofluids cause environmental issues. Therefore, water-based organic colloids of coffee, walnut shell, black tea, and madder have been studied to overcome these problems. To accurately measure the behavior of colloids, laboratory single slope solar still was used in laboratory conditions. Also, two single slope solar stills with the... 

    Design and Fabrication of Reciprocating Micropumps with Actuated Fluid Slug

    , M.Sc. Thesis Sharif University of Technology Amiri Hezave, Hamid (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Design, fabrication and performance of the reciprocating micropumps with actuated fluid slug have been investigated. In these micropumps, pumping principle is based on reciprocating movement of a fluid slug. The fluid slug must be conductive in magnetohydrodaynamic micropump to be actuated by Lorentz force and have good magnetic properties in ferrofluidic micropumps to be actuated by an external magnetic field.
    On the other hand, a theory is developed in ahead of design and fabrication process to diagnose the critical and the most influential parameters. Magnetohydrodynamic micropumps in 4 distinict design using nozzle-diffuser element, passive ball valve and active mercury valve have... 

    Modeling of a Thermopneumatic Micropump

    , M.Sc. Thesis Sharif University of Technology Shahsavari, Setareh (Author) ; Saeedi, Mohammad Hassan (Supervisor) ; Saeedi, Mohammad Saeed (Supervisor) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Thermopneumatic micropump is one type of positive displacement micropumps, which has many applications due to its relatively large stroke volume, low working voltage, and simple fabrication in microscale. In this paper, a numerical study of heat transfer and fluid flow in a valveless thermopneumatically driven micropump is presented. For rectifying the bidirectional flow, a nozzle and a diffuser are used as the inlet and outlet of the chamber. Since the fluid flow is induced by the motion of a diaphragm, the numerical simulation includes fluid structure interaction, which requires applying a dynamic mesh. The domain of solution is divided into two sections; the actuator unit, which contains... 

    CFD Simulation and Analysis of Heat Pipe Heat Exchanger Radiator

    , M.Sc. Thesis Sharif University of Technology Abed Niari, Saeed (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Due to the development of heat pipes in different industries and special characteristics of heat pipes, in this study, it has been tried using computational fluid dynamics (CFD) method to simulate a heat pipe heat exchanger that can be a replacement for the normal radiator. The experimental model of this heat exchanger has been tested at past studies and the numerical simulation of the heat exchanger will analyze at present study. The use of heat pipe in the car radiator has many advantages such as reducing fluid pressure drop through the heat exchanger, high reliability due to the particular structure of the heat exchanger (individual performance of each heat pipe) and improving heat...