Loading...
Search for: shafii--mohammad-behshad
0.013 seconds
Total 68 records

    The Numerical Simulation of Droplet Generation and its Control Using Electrowetting Method in Microfluidic Devices

    , M.Sc. Thesis Sharif University of Technology Merdasi, Arshia (Author) ; Moosavi, Ali (Supervisor) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    In this research, two important mechanisms were discussed including droplet generation and jumping mechanisms using electro wetting-on-dielectric. For these purposes, the finite element method (FEM) was used to solve the unsteady Naiver-Stokes equation. In addition, the level set method was applied to capture the interface between two phases. In the current study, first, droplet generation in a T-junction fluidic channel device was studied through using electro wetting actuation. The efficacy of electro wetting on the droplet generation frequency as well as droplet diameter is visible in a T-junction fluidic channel since after applying voltages, specified with non-dimensional electro... 

    Experimental Study of Solar Still with Heat Pipes Using Phase Change Material

    , M.Sc. Thesis Sharif University of Technology Ravan, Ayoub (Author) ; Sadrhosseini, Hani (Supervisor) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Solar distillation is a comparatively easy treatment of brackish (i.e. contain dissolved salts) water supplies. Distillation is a well-known process, which may be used for water filtration utilizing heating sources. In this research, the solar distillation set with heat-pipes was made and tested in 18 months.At the first step, during four days, the pipes were filled with some water to certain height every day while temperature and produced water were estimated. At the second step, the vacuum pipes were filled with some oil and tested for 4 different heights within 4 days; and in final steps, aluminum chips, washing wire and metal foam were shaded into the tank then tested by an optimum water... 

    Experimental Investigation of Double Wall Solar Still

    , M.Sc. Thesis Sharif University of Technology Favakeh, Amir Hossein (Author) ; Shafii, Mohammad Behshad (Supervisor) ; Sadrhosseini, Hani (Supervisor)
    Abstract
    Salt water is desalinated to produce fresh water suitable for human consumption or irrigation. Most of desalination methods require consuming large amounts of fossil fuels. Solar distillation is one of the best techniques from another available techniques for desalinating in small-scale brackish water. The main problem of these systems is the low rate of water production.Single basin solar still is a very simple solar device used for converting available brackish or waste water into potable water. This device can be fabricated easily with locally available materials. The maintenance is also cheap and no skilled labor is required. It can be a suitable solution to solve drinking water problem.... 

    Analytical and Experimental Study of Heat Pipes Performance to Condense the Vapors Outlet of Process Condensate Strippers

    , M.Sc. Thesis Sharif University of Technology Fadaee Ayyam, Behrooz (Author) ; Shafii, Mohammad Behshad (Supervisor) ; Sadrhosseini, Hani (Supervisor)
    Abstract
    In petrochemical, Process condensate is mixtures of dissolved gasses and water. Process condensate striper tower is a physical separation equipment where dissolved gasses remove from water by saturated steam. The Process condensate feed is introduced at the top of the column and the steam input is located at the bottom. When the process condensate enters the stripper tower, it comes down the tower also when the steam enters the tower, it goes up, because there is packing portion in the stripper tower and two streams are countercurrent, as result contact between steam and process condensate, a lot of dissolved gases vapors and exits with steam from top of tower. After leaving the tower, the... 

    Simulation of Residual Oil Displacement at the Pore-scale

    , M.Sc. Thesis Sharif University of Technology Farrokhnia Hamedani, Bahareh (Author) ; Moosavi, Ali (Supervisor) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    EOR (oil enhanced recovery) is very important as oil is a nonrenewable resource. Depending on the characteristics of the rock formation, primary production can result in the recovery of up to 20% of the oil originally in the rock. This means that at least 80% of the oil may remain in the rock unless additional technology is used to increase the recovery. Before finding best way to do for EOR, scientists must study properties of different porous media that oil is trapped between its grains. Most of research and studies investigate networks of porous media but this work focused on oil movement through a pore space in porous media lonely not in network by waterflooding. Studying a pore space is... 

    Pinch Analysis of Heat Exchanger Networks in the Crude Oil Distillation Unit of Bandar-Abbas Refinery

    , M.Sc. Thesis Sharif University of Technology Hesabi, Ashkan (Author) ; Sadrhosseini, Hanieh (Supervisor) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Since oil prices continue to increase, energy conservation remains the prime industrial concern. Existing processes in power plants and oil refineries are not energy efficient as they should be therefore new projects can be defined to increase the energy efficiency without incurring any cost. The most appropriate utility for the processes should be explored to reduce emissions, increase the plant capacities and improve product qualities and energy efficiencies by one coherent strategic plan for the overall site which can be achieved by a full understanding of pinch technology and awareness of the available tools for applying it in practical way. Since the distillation unit of crude oil... 

    Sensitivity and Optimal Design for a CCHPW System for Extremely Hot and Humid Area

    , M.Sc. Thesis Sharif University of Technology Sabet, Siavash (Author) ; Shafii, Mohammad Behshad (Supervisor) ; Zabihollah, Abolghasem (Supervisor)
    Abstract
    Considering problems related to energy, including high fuel prices, increasing demand, constraints, and environmental pollution, makes it clear that efficiency is one of the major problems in all over the world. Iran’s southern parts and those countries around Persian Gulf face serious shortage of drinking water. Moreover, on top of the other three types of energy production the need for drinking water is highly sensible. Therefore, the use of CCHPW System is the best solution in these areas. The purpose of this design is to empower the control capability of the combined systems over all factors and apply the necessary changes under different conditions. This endeavor requires a program to... 

    Experimental Study of Internal Forced Convection of Ferrofluid Flow in Porous Media

    , M.Sc. Thesis Sharif University of Technology Sehat, Ashkan (Author) ; Sadrhosseini, Hani (Supervisor) ; Shafii, Mohammad Behshad (Co-Advisor)
    Abstract
    The present work illustrates the results of an experimental study of ferrofluid flow in a tube subjected to a constant heat flux on its wall and filled with permeable material under the effect of magnetic field. The aim of this project is investigating the enhancement of heat transfer and obtaining a uniform temperature distribution inside the pipe. In order to achieve this, a porous medium with a porosity of 0.39 and ferrofluid with volume fractions of 0.6, 1.0 and 1.5 are used simultaneously, in the presence of magnetic field. The experiments are held for four different Reynolds numbers of 147.1, 167.3, 184.3 and 205.1. Also, four various modes of the oscillatory magnetic field are applied... 

    Improvement of Industrial Symbiosis Between Greenhouses and Industrial Waste Heat Sources by Employing Organic Rankine Cycle (ORC)

    , M.Sc. Thesis Sharif University of Technology Ahmadpour, Mehran (Author) ; Roshandel, Ramin (Supervisor) ; Shafii, Mohammad Behshad (Co-Supervisor)
    Abstract
    The water crisis caused by climate change and anthropogenic activities in Iran has affected the daily lives of the people, and since the agricultural sector has a large share of water consumption, greenhouse cultivation and indoor farming has been developing in this country, to improve water productivity. Considering that the main source of energy supply in greenhouses is fossil fuels, in this work, the possibility of improving Industrial Symbiosis (IS) between greenhouses and waste heat sources in industries by employing the Organic Rankin Cycle (ORC) has been studied, in order to meet the heating demand of greenhouses in a more sustainable and eco-friendly way.Based on that, by modeling... 

    Integration of Miniature Heat Pipes into a PEM Fuel Cell for Cooling Application

    , M.Sc. Thesis Sharif University of Technology Shirzadi, Navid (Author) ; Roshandel, Ramin (Supervisor) ; Shafii, Mohammad Behshad (Co-Advisor)
    Abstract
    Due to the operation of proton exchange membrane fuel cell (PEMFC), temperature will rise because of the electrochemical reactions and control of temperature is one of the most important sections that has influence on the performance of the fuel cell. In this study three alternative for cooling and controlling the temperature situation is proposed and compared. the experimental setup consists of the simulated fuel cell that produce heat just like PEMFC and number of thermosyphon miniature heat pipes for evoke the heat and three types of condenser that makes three different scenario for this cooling setup. Free convection, force convection using Fan and force convection using circulating... 

    Evaluation and Application of Thermo Photovoltaic (TPV) in Energy Recycling, A Case study: Application in an Energy Intensive Unit of Mobarakeh Steel Complex

    , M.Sc. Thesis Sharif University of Technology Shoaei, Ehsan (Author) ; Saboohi, Yadollah (Supervisor) ; Shafii, Mohammad Behshad (Co-Advisor)
    Abstract
    Thermo photovoltaic (TPV) is temperature oriented power generation system in which an emitter with temperature value around 1200℃ is usually used for radiation to the cells.Iron and steel industry as a fundamental industry has the most potential of interest for using TPV for recovering of energy. In steel casting unit there is rather high amount of radiation with temperature around 1000℃ which can be recovered by TPV system. The main aim of this dissertation is developing a mathematical model as well as verification of the model experimentally, in which the model is extended for possible using in iron and steel industry.The key modeling parameters of TPV include: open circuit voltage, short... 

    Modeling and Heat Management in Polymer Electrolyte Membrane Fuel Cell Using Heat pipes for CHP Applications

    , M.Sc. Thesis Sharif University of Technology Tahmasbi, Amir Abbas (Author) ; Roshandel, Ramin (Supervisor) ; Shafii, Mohammad Behshad (Co-Advisor)
    Abstract
    Fuel cell-based CHP systems for distributed residential power generation represent an interesting alternative to traditional thermoelectric plants. This is mainly due to the high efficiency obtainable in the production of electricity and heat in a decentralized, quiet and environmental friendly way. The current thesis focuses on the development, in Matlab_Simulink environment, of a complete dynamic model of a residential cogenerative (CHP) energy system consisting of the Proton Exchange Membrane fuel cell (PEMFC), in two scenarios. The first scenario emphasizes on use of fan and usual Heat Exchanger for cooling of Proton membrane fuel cell and conveying generated heat in PEM fuel cell to... 

    The Effect Of Using Heat Pipes On Heat Management In Pem Fuel Cell- Metal Hydride System

    , M.Sc. Thesis Sharif University of Technology Hosseini, Atiyeh (Author) ; Roshandel, Ramin (Supervisor) ; Shafii, Mohammad Behshad (Co-Advisor)
    Abstract
    On-board hydrogen storage systems (as a substitute for fossil fuels) employing high-pressure metal hydrides, promise advantages including high volumetric capacities and cold start capability. In this project, we discuss the development of a system simulation model in Matlab/Simulink platform. Transient equations for mass balance and energy balance are presented. During driving, the bed requires external heat source, which is planned to be supplied by rejected heat from proton-exchange membrane (PEM) fuel cell. Therefore, this study develops a system-level dynamic model of a PEM fuel cell that is capable of characterizing the mixed effects of temperature, gas flow and capacitance, with... 

    Modeling Micro Combined Heat and Power System

    , M.Sc. Thesis Sharif University of Technology Gholizadeh Touchaei, Ali (Author) ; Saidi, Mohammad saeid (Supervisor) ; Shafii, Mohammad Behshad (Supervisor) ; Saeedi, Mohammad Hassan (Supervisor)
    Abstract
    Micro combined heat and power (MCHP) system is one of the most worldwide considered energy saving with high total efficiency systems. This research presents the application of MCHP to small scale users such as residential or light commercial buildings. Initially, the available technology in micro scale that can be used as an energy generator has been specified and categorized. Since then, by using the overall energy purchased cost by households assuming the energy carriers are kerosene, gas and electricity, total demand has been determined considering that the electricity expenses showing the use of electric appliances and the gas expenses expressing the cost of domestic hot water and... 

    Numerical and Experimental Study of a Thermal Energy Storage System Based on Accelerating the Melting of a Phase Change Material by Using an Auxiliary Fluid

    , M.Sc. Thesis Sharif University of Technology Khademi, Alireza (Author) ; Darbandi, Masoud (Supervisor) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    The study of heat transfer using solid-liquid phase shifting has attracted much attention in applied engineering fields such as latent heat energy storage, building walls, waste energy recovery, battery thermal management, and more. Over the past few decades, the literature on phase shift has grown tremendously in terms of theory, laboratory, and numerical studies. Melting of phase change materials in rectangular chambers due to its wide range of engineering applications in fields such as casting, metallurgy, heat energy storage, and heat exchangers used in buildings, as well as aerospace issues including the use of These systems have been the subject of numerous studies on space missions to... 

    Experimental Investigation of Velocity Field Due to Liquid Droplet Impingement Onto the Surface af a Molten Phase Change Material

    , M.Sc. Thesis Sharif University of Technology Asadi, Mohammad Reza (Author) ; Shafii, Mohammad Behshad (Supervisor) ; Ghahremani, Amir Reza (Co-Supervisor)
    Abstract
    The impact of droplets is a widely used method for creating direct heat transfer between two fluids. This method enhances heat transfer between the working fluid and the phase change material (PCM). Therefore, a thorough investigation has been carried out on the impact of an acetone droplet on the surface of a pool of molten paraffin, which leads to the simultaneous boiling of the acetone droplet and solidifying part of the paraffin in contact with the acetone. The dynamics of impact, the depth and width of the crater, the jet, and the crown formed as a result of the impact have been reported with varying Weber numbers (ranging from 74 to 375), and the temperature of the pool surface of the... 

    Experimental Investigation into the Direct Contact of Working Fluid with Phase Change Material and its Effect on the Heat Transfer Rate

    , M.Sc. Thesis Sharif University of Technology Ranjbar Kermani, Javad (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    The unique properties of phase change materials (PCMs), such as high latent heat and nearly constant phase change temperature, have made them a suitable option for use in thermal energy storage systems and thermal management systems. However, the low thermal conductivity of these materials has imposed limitations on their widespread use in industries. In this study, for the first time, the effect of injecting a boiling fluid (BF) into the PCM container to enhance heat transfer and accelerate the solidification process has been experimentally investigated. In this regard, paraffin wax and acetone have been selected as the PCM and the BF, and the effects of parameters such as the initial... 

    Experimental Study of the Conversion of Heat to Electricity Using Movement of a Magnet Inside an Oscillating Heat Pipe

    , M.Sc. Thesis Sharif University of Technology Moradi, Sepehr (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Heat sources with temperatures less than 100 °C are available in various processes in the form of waste heat and from renewable sources such as solar energy. One of the methods of gaining benefit from these ubiquitous and abundant heat sources is using thermal harvesters that convert low-temperature heat into electrical energy without the need for the power grid. Portable harvesters can be a reliable and low-cost option for providing stable energy for low-power electronic devices such as wireless sensors. Many studies have been conducted at the global level to design and develop efficient low-temperature heat harvesting mechanisms. However, each of them is associated with fundamental... 

    Design and Study of a Resistive Pulse Sensing System with a Tunable Pore

    , M.Sc. Thesis Sharif University of Technology Shoghi Tekmedash, Mohammad (Author) ; Taghipoor, Mojtaba (Supervisor) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    Over the last few years, exploiting particle sensing systems for micro-nanoparticles has grabbed much attention. Attaining the physical properties of particles using resistive pulse sensing has been one of the utmost applicable methods of sensing particles. Pores are pivotal elements of systems based on resistive pulse sensing. Two electrodes are placed at both sides of the pore, filling the containers with an electrolyte solution. Pulses of particle translocation across the pore can be recorded by applying a voltage across the electrodes. In more developed versions of resistive pulse sensing systems, pore size is tunable to attain polydisperse particles within a dispersion. In subsequent... 

    Experimental Investigation of Dynamics of Ferrofluid-Based Liquid Marbles Under External Magnetic Fields

    , M.Sc. Thesis Sharif University of Technology Mohammad Rashidi, Mahbod (Author) ; Shafii, Mohammad Behshad (Supervisor) ; Taghipoor, Mojtaba (Supervisor) ; Bijarchi, Mohamad Ali (Co-Supervisor)
    Abstract
    Liquid marbles are droplets enwrapped by a layer of micro/nanoparticles. Due to the insulation of inner fluid from the environment, the lower evaporation rate of the fluid, and the capability of motion even on hydrophilic surfaces, these liquid marbles, as an alternative to conventional droplets, have attracted the attention of researchers in digital microfluidics. Utilizing ferrofluid as the liquid core of the liquid marbles enables remote control over the liquid marbles by an external magnetic field. In this research, the dynamic behavior of ferrofluid liquid marbles under the magnetic field generated by an electromagnet is investigated. In this research, governing physics on the motion of...