Loading...
Search for: grafting--chemical
0.013 seconds
Total 75 records

    Unsteady solute dispersion by electrokinetic flow in a polyelectrolyte layer-grafted rectangular microchannel with wall absorption

    , Article Journal of Fluid Mechanics ; Volume 887 , 2020 Sadeghi, M ; Saidi, M. H ; Moosavi, A ; Sadeghi, A ; Sharif University of Technology
    Cambridge University Press  2020
    Abstract
    The dispersion of a neutral solute band by electrokinetic flow in polyelectrolyte layer (PEL)-grafted rectangular/slit microchannels is theoretically studied. The flow is assumed to be both steady and fully developed and a first-order irreversible reaction is considered at the wall to account for probable surface adsorption of solutes. Considering low electric potentials, analytical solutions are obtained for electric potential, fluid velocity and solute concentration. Special solutions are also obtained for the case without wall adsorption. To track the dispersion properties of the solute band, the generalized dispersion model is adopted by considering the exchange, the convection and the... 

    Ultrafine Co nanoislands grafted on tailored interpenetrating N-doped carbon nanoleaves: An efficient bifunctional electrocatalyst for rechargeable Zn-air batteries

    , Article Chemical Engineering Journal ; Volume 431 , 2022 ; 13858947 (ISSN) Zhang, F ; Chen, L ; Yang, H ; Zhang, Y ; Peng, Y ; Luo, X ; Ahmad, A ; Ramzan, N ; Xu, Y ; Shi, Y ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Zeolitic imidazole frameworks (ZIFs) provide an exciting platform to design and fabricate non-precious-metal carbon-based catalysts for oxygen reduction/evolution reaction (ORR/OER). Herein, we elaborately design a facile enzyme-assisted synthetic strategy that enables to tailor the ZIFs precursors into structural stable decussation shape, which derived Co nanoislands grafted on decussate N-doped carbon nanoleaves (D-Co@NC) can well retain the interpenetrating nanostructure. Benefiting from the combined advantages of compositions and interpenetrating nanostructures, D-Co@NC possesses 5.2 times higher exposed electrochemical active area than the conventional dodecahedral one, thus endowing... 

    Tuning the dispersion of reactive solute by steady and oscillatory electroosmotic-Poiseuille flows in polyelectrolyte-grafted micro/nanotubes

    , Article Journal of Fluid Mechanics ; 2019 , Pages 73-112 ; 00221120 (ISSN) Reshadi, M ; Saidi, M. H ; Sharif University of Technology
    Cambridge University Press  2019
    Abstract
    This paper extends the analysis of solute dispersion in electrohydrodynamic flows to the case of band broadening in polyelectrolyte-grafted (soft) capillaries by accounting for the effects of ion partitioning, irreversible catalytic reaction and pulsatile flow actuation. In the Debye-Hückel limit, we present the benchmark solutions of electric potential and velocity distribution pertinent to steady and oscillatory mixed electroosmotic-pressure-driven flows in soft capillaries. Afterwards, the mathematical models of band broadening based on the Taylor-Aris theory and generalized dispersion method are presented to investigate the late-time asymptotic state and all-time evolution of... 

    Tuning the dispersion of reactive solute by steady and oscillatory electroosmotic-Poiseuille flows in polyelectrolyte-grafted micro/nanotubes

    , Article Journal of Fluid Mechanics ; 2019 , Pages 73-112 ; 00221120 (ISSN) Reshadi, M ; Saidi, M. H ; Sharif University of Technology
    Cambridge University Press  2019
    Abstract
    This paper extends the analysis of solute dispersion in electrohydrodynamic flows to the case of band broadening in polyelectrolyte-grafted (soft) capillaries by accounting for the effects of ion partitioning, irreversible catalytic reaction and pulsatile flow actuation. In the Debye-Hückel limit, we present the benchmark solutions of electric potential and velocity distribution pertinent to steady and oscillatory mixed electroosmotic-pressure-driven flows in soft capillaries. Afterwards, the mathematical models of band broadening based on the Taylor-Aris theory and generalized dispersion method are presented to investigate the late-time asymptotic state and all-time evolution of... 

    Tuning electrokinetic flow, ionic conductance, and selectivity in a solid-state nanopore modified with a pH-responsive polyelectrolyte brush: A molecular theory approach

    , Article Journal of Physical Chemistry C ; Volume 124, Issue 34 , 2020 , Pages 18513-18531 Sadeghi, M ; Saidi, M. H ; Moosavi, A ; Kröger, M ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    We use an efficient molecular theory approach to study electrokinetic flow within a pH-responsive nanopore grafted with a polyelectrolyte (PE) brush. The flow rate, migration and convective conductance, electric potential and velocity fields, species distributions and the degree of ionization of the weak PE functional groups and nanopore selectivity are obtained and interpreted while considering pH-induced surface charges. The theory is generally based on writing the overall free energy of the system including the entropies arising from the conformations of flexible, excluded volume chains, the mixing of mobile species, electrostatic contribution, and the free energy due to the chemical... 

    Synthesis of poly(amidoamine)-graft-poly(methyl acrylate) magnetic nanocomposite for removal of lead contaminant from aqueous media

    , Article International Journal of Environmental Science and Technology ; Volume 13, Issue 10 , 2016 , Pages 2437-2448 ; 17351472 (ISSN) Pourjavadi, A ; Abedin Moghanaki, A ; Hosseini, S. H ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2016
    Abstract
    Poly(amidoamine)-graft-poly(methyl acrylate) magnetic nanocomposite was synthesized via radical polymerization of methyl acrylate onto modified magnetic nanoparticles followed by the functionalization of the methyl ester groups with poly(amidoamine) dendrimer. The resulting poly(amidoamine)-graft-poly(methyl acrylate) magnetic nanocomposite was then characterized by infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, scanning electron microscope and X-ray diffraction analysis. Its application as an adsorbent for the removal of Pb(II) ions was studied. The removal capability of the adsorbent was investigated in different pH values, contact time (kinetics) and... 

    Synthesis of new electromagnetic nanocomposite based on modified Fe3O4 nanoparticles with enhanced magnetic, conductive, and catalytic properties

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 65, Issue 8 , 2016 , Pages 384-390 ; 00914037 (ISSN) Pourjavadi, A ; Doroudian, M ; Afshar Saveh, Z ; Doulabi, M ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    A new method for the fabrication of an electromagnetic nanocomposite based on Fe3O4 and polyaniline (PANI) is offered. The authors focused on improvement of the physical and electromagnetic properties of the nanocomposite using a new synthetic method. Supermagnetic Fe3O4 nanoparticles were synthesized through coprecipitation method. As a chemical modification, the third generation of poly (amidoamine) dendrimer was grafted on the surface of the nanoparticles. PANI was grafted from -NH2 functional groups of dendrimer via in situ polymerization of aniline. Finally, Au nanoparticles were loaded on the nanocomposite and its catalytic activity for reduction reactions was studied  

    Synthesis of a novel magnetic starch-alginic acid-based biomaterial for drug delivery

    , Article Carbohydrate Research ; Volume 487 , 2020 Forouzandehdel, S ; Forouzandehdel, S ; Rezghi Rami, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The magnetic composite hydrogel was fabricated by the graft copolymerization of itaconic acid (IA) onto starch and Alginic acid in the presence graphene sheets (Gr) and Fe3O4 nanoparticles (Fe3O4@Gr-IA/St-Alg) for Guaifenesin (GFN) delivery and wound healing. The Fe3O4@Gr-IA/St-Alg biomaterial is a hydrogel network endowed the material with magnetic property. In addition, GFN not only achieved effectively bound to the magnetic hydrogel, but also released in a controlled manner. The using external magnetic field has significantly positive influence on the drug release rate. To close, these hydrogel drug carriers offer a favorable platform for magnetically targeted drug delivery as well as a... 

    Synthesis and swelling behavior of a new superabsorbent hydrogel network based on polyacrylamide grafted onto salep

    , Article Journal of Applied Polymer Science ; Volume 112, Issue 5 , 2009 , Pages 2625-2633 ; 00218995 (ISSN) Pourjavadi, A ; Rezanejade Bardajee, G ; Soleyman, R ; Sharif University of Technology
    2009
    Abstract
    Synthesis and swelling behavior of a new superabsorbent hydrogel based on natural salep grafted with Polyacrylamide is described. The new superabsorbent hydrogel biopolymer was synthesized via radical crosslink-ing and graft copolymerization of acrylamide monomer onto salep backbones. Regarding to the water absorption of hydrogel, the best synthesis condition is reported. FTIR spectroscopy and thermogravimetric analysis were used to confirm the structure of the final product and a mechanism for superabsorbent hydrogel formation was also suggested. After preparing the desired hydrogels based on optimum condition, several factors affecting the swelling behavior of hydrogel including pH of... 

    Synthesis and properties of biodegradable hydrogels of κ-carrageenan grafted acrylic acid-co-2-acrylamido-2-methylpropanesulfonic acid as candidates for drug delivery systems

    , Article Reactive and Functional Polymers ; Volume 67, Issue 7 , 2007 , Pages 644-654 ; 13815148 (ISSN) Pourjavadi, A ; Barzegar, Sh ; Zeidabadi, F ; Sharif University of Technology
    2007
    Abstract
    Novel types of highly swelling hydrogels were prepared by grafting crosslinked polyacrylic acid-co-poly-2-acrylamido-2-methylpropanesulfonic acid (PAA-co-PAMPS) chains onto κ-carrageenan through a free radical polymerization method. Here, we propose a mechanism for κ-carrageenan-g-PAA-co-PAMPS formation and confirm the hydrogel structure using FTIR spectroscopy. The effect of grafting variables (i.e. concentration of methylenebisacrylamide (MBA), acrylic acid/-2-acrylamido-2-methylpropanesulfonic acid (AA/AMPS) weight ratio, ammonium persulfate (APS), κ-carrageenan, neutralization percent and reaction temperature) were systematically optimized to achieve a hydrogel with a maximum swelling... 

    Synthesis and investigation of swelling behavior of grafted alginate/alumina superabsorbent composite

    , Article Starch/Staerke ; Volume 60, Issue 9 , 9 September , 2008 , Pages 457-466 ; 00389056 (ISSN) Pourjavadi, A ; Farhadpour, B ; Seidi, F ; Sharif University of Technology
    2008
    Abstract
    In this study a novel alginate-g-poly(acrylic acid)/alumina composite was synthesized and characterized. Preparation of the composite hydrogels involved free radical polymerization of a combination of alginate, acrylic acid (AA) and distilled water, in appropriate amounts and N,N-methylene bisacrylamide (MBA) as crosslinking agent. The composite formation was confirmed by Fourier transform infrared spectroscopic (FTIR). The surface morphologies of the synthesized hydrogels were assessed by scanning electron microscopy. Systematically, the different variables of the graft copolymerization were optimized to achieve maximum swelling capacity. The swelling of superabsorbent hydrogels was... 

    Synthesis and characterization of poly(L-lactide)-block-poly(ε-caprolactone)-grafted titanium dioxide nanoparticles via ring-opening in situ grafting polymerization

    , Article Polymer Composites ; Volume 42, Issue 8 , 2021 , Pages 3722-3731 ; 02728397 (ISSN) Ebrahimi, H ; Sharif, F ; Ramezani Saadat Abadi, A ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    The synthesis of nanocomposites via in situ grafting polymerization due to its ability to produce polymeric materials with promising microscopic and macroscopic characteristics is becoming very attractive. In this paper, different poly(L-Lactide)-block-poly(ε-caprolactone) (PLLA-b-PCL) copolymers were in situ synthesized in the presence of modified titanium dioxide (TiO2) nanoparticles (mTNP) as the initiator and stannous octoate as the catalyst. The surface of TiO2 was modified by grafting aminopropyl trimethoxy silane to improve initiator efficiency. Copolymers with 90/10, 70/30, and 50/50 mass ratio of L-lactide/ ε-caprolactone and 5 wt% of mTNP (proportional to ε-caprolactone) were... 

    Synthesis and characterization of bagasse poly(methyl methacrylate) graft copolymer

    , Article Macromolecular Symposia ; Volume 274, Issue 1 , 2008 , Pages 49-54 ; 10221360 (ISSN) Sarvi, I ; Pourjavadi, A ; Noei Aghaei, M. A ; Sharif University of Technology
    2008
    Abstract
    Graft copolymerization of methyl methacrylate (MMA) was carried out on bagasse fibers in an aqueous medium using eerie ammonium nitrate (CAN) as initiator under a neutral atmosphere. In order to obtain the optimum condition for graft copolymerization, the effects of initiator concentration, temperature, time of reaction, and monomer concentration were studied. The maximum grafting percent was found to be 122%. The bagasse grafted poly(methyl methacrylate) was characterized by FTIR and its thermal behavior was characterized by TGA. Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA  

    Synthesis and characterization of a novel (salep phosphate)-based hydrogel as a carrier matrix for fertilizer release

    , Article Reactive and Functional Polymers ; Volume 72, Issue 10 , 2012 , Pages 667-672 ; 13815148 (ISSN) Pourjavadi, A ; Doulabi, M ; Soleyman, R ; Sharif, S ; Eghtesadi, S. A ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Salep phosphate modified biopolymers with different phosphate contents were prepared via reacting salep (a multi-component polysaccharide obtained from dried tubers of certain natural terrestrial orchids) with a solution of primary and secondary sodium phosphates under basic conditions in a semidry process. Structural characterization of salep phosphates were carried out by 31P NMR, FT-IR spectra and TGA curves. Determination of the phosphate content in samples was done by a standard spectrophotometric method. Then, novel (salep phosphate)-based hydrogels were synthesized by graft copolymerization of acrylic acid (AA) monomer onto salep phosphate backbones. Effect of the phosphate contents... 

    Synthesis and characterization of a new nanocomposite by filling of CNT with CoFe2O4 Magnetic nanoparticles and grafting to polymer

    , Article Nano ; Volume 4, Issue 6 , 2009 , Pages 371-376 ; 17932920 (ISSN) Sepahvand, R ; Adeli, M ; Actinchap, B ; Bahari, A ; Sharif University of Technology
    Abstract
    In this work, the synthesis and characterization of a new nanocomposite from carbon nanotubes-graft-polymer (CNTs-g-P) is reported. The products were obtained by the filling of multi-walled carbon nanotubes (MWCNTs) (inner diameter 2040 nm) with CoFe2O4 magnetic nanoparticles, been grafted with poly (caprolactone). The filling process was carried out by using acid treatment through wet chemistry. The structure and the properties of the new nanocomposite were studied with TEM, VSM, TGA, and spectroscopic techniques. © 2009 World Scientific Publishing Company  

    Synthesis and absorbency of gelatin-graft-poly(sodium acrylate-co- acrylamide) superabsorbent hydrogel with saltand pH-responsiveness properties

    , Article E-Polymers ; 2006 , Pages 1-15 ; 16187229 (ISSN) Pourjavadi, A ; Sadeghi, M ; Mahmodi Hashemi, M ; Hosseinzadeh, H ; Sharif University of Technology
    European Polymer Federation  2006
    Abstract
    In this article, we synthesize a novel gelatin-based superabsorbent hydrogel via graft copolymerization of mixtures of acrylic acid (AA) and acrylamide (AAm) onto gelatin backbones. The polymerization reaction was carried out in an aqueous medium and in the presence of ammonium persulfate (APS) as an initiator and N,N-methylene bisacrylamide (MBA) as a crosslinker. The hydrogel structures were confirmed by FTIR spectroscopy. The effect of grafting variables, i.e. concentration of MBA and APS, AA/AAm weight ratio, and reaction time and temperature, was systematically optimized to achieve a hydrogel with swelling capacity as high as possible. The swelling behavior of these absorbent polymers... 

    Switchable on/off drug release from gold nanoparticles-grafted dual light- and temperature-responsive hydrogel for controlled drug delivery

    , Article Materials Science and Engineering C ; Volume 76 , 2017 , Pages 242-248 ; 09284931 (ISSN) Amoli Diva, M ; Sadighi Bonabi, R ; Pourghazi, K ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    A switchable dual light- and temperature-responsive drug carrier using gold nanoparticles (Au NPs)-grafted poly(dimethylacrylamide-co-acrylamide)/poly acrylic acid [P(DMA-co-AAm)/PAAc] hydrogel was prepared by free radical polymerization procedure using N,N-methylenebisacrylamide as cross-linker and ammonium persulfate as initiator. Initial P(DMA-co-AAm) hydrogel and uniformly-distributed stable Au NPs, prepared by reduction of hydrogen tetrachloroaureate (III) hydrate in the presence of trisodium citrate, were synthesized separately. Then, the prepared P(DMA-co-AAm) and Au NPs were added to an acrylic acid solution along with the cross-linker and initiator to prepare PAAc hydrogel within... 

    Swelling properties of CMC-g-Poly (AAm-co-AMPS) superabsorbent hydrogel

    , Article Journal of Applied Polymer Science ; Volume 113, Issue 6 , 2009 , Pages 3442-3449 ; 00218995 (ISSN) Pourjavadi, A ; Ghasemzadeh, H ; Mojahedi, F ; Sharif University of Technology
    2009
    Abstract
    A series of biopolymer-based superabsorbent hydrogels based on carboxymethyl cellulose has been prepared by free-radical graft copolymerization of acrylamide and 2-acrylamido-2-methylpropan sulfonic acid (AMPS) in aqueous solution using methylenebisacrylamide as a crosslinking agent and ammonium persulfate as an initiator. The effect of variables on the swelling capacity such as: acrylamide/AMPS weight ratio, reaction temperature, and concentration of the initiator and crosslinker were systematically optimized. The results indicated that with increasing the amount of AMPS, the swelling capacity is increased. FT-IR spectroscopy and scanning electron microscope analysis were used to confirm... 

    Surface modification of polysulfone ultrafiltration membranes by free radical graft polymerization of acrylic acid using response surface methodology

    , Article Journal of Polymer Research ; Volume 26, Issue 9 , 2019 ; 10229760 (ISSN) Ganj, M ; Asadollahi, M ; Mousavi, S. A ; Bastani, D ; Aghaeifard, F ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    In this research, polysulfone (PSf) ultrafiltration (UF) membranes were prepared by a phase inversion method. Surface modification of the PSf membranes was carried out via grafting of acrylic acid as a hydrophilic monomer by free radical graft polymerization initiated by redox reaction. A central composite design (CCD) of response surface methodology (RSM) was applied to design the experiments. The process variables were acrylic acid concentration (CAA), redox system contact time (T1), and acrylic acid polymerization time (T2), while the contact angle (CA), pure water flux (PWF), and flux recovery ratio (FRR) were considered as the responses. Analysis of variance (ANOVA) demonstrated that... 

    Stimuli-responsive polyelectrolyte brushes for regulating streaming current magnetic field and energy conversion efficiency in soft nanopores

    , Article Physics of Fluids ; Volume 34, Issue 8 , 2022 ; 10706631 (ISSN) Sadeghi, M ; Saidi, M. H ; Kröger, M ; Tagliazucchi, M ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    The electrokinetic energy conversion, electroviscous effect, and induced internal and external magnetic fields in a smart polyelectrolyte grafted "soft"nanopore with pH responsiveness are studied here using an efficient molecular theory approach. The analysis is based on writing the total free energy of the system, including the conformational entropy of the flexible, self-avoiding polymer chains and the translational entropy of the mobile species, the electrostatic interactions, and the free energy due to chemical equilibrium reactions. Then, the free energy is minimized, while satisfying the necessary constraints to find the equilibrium state of the system. The predictions of the model are...