Loading...
Search for: water-treatment
0.008 seconds
Total 167 records

    Particle removal optimization in rotating dissolved air flotation used in paper-recycling wastewater treatment

    , Article Water and Environment Journal ; Volume 36, Issue 1 , 2022 , Pages 3-17 ; 17476585 (ISSN) Hasannattaj Jelodar, A ; Amini Rad, H ; Borghei, S. M ; Vossoughi, M ; Rouhollahi, R ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Rotating dissolved air flotation (RDAF) has been utilized for several decades in paper-recycling wastewater treatment; however, it has rarely been addressed in the literature, which makes research into this system challenging and complicated. However, in this work, a full-scale industrial wastewater treatment system for a paper-recycling mill in Mazandaran province, Iran, was evaluated. Experiments indicated that under the same wastewater and chemical conditions, there are differences in the removal efficiencies. This finding was investigated by conducting simulation in ANSYS CFX R18.0 and experimentation simultaneously. Thus, the main purpose of this research was to optimize the operation... 

    Novel polyamide-based nanofibers prepared by electrospinning technique for headspace solid-phase microextraction of phenol and chlorophenols from environmental samples

    , Article Analytica Chimica Acta ; Volume 716 , 2012 , Pages 34-39 ; 00032670 (ISSN) Bagheri, H ; Aghakhani, A ; Baghernejad, M ; Akbarinejad, A ; Sharif University of Technology
    2012
    Abstract
    A novel solid phase microextraction (SPME) fiber was fabricated by electrospinning method in which a polymeric solution was converted to nanofibers using high voltages. A thin stainless steel wire was coated by the network of polymeric nanofibers. The polymeric nanofiber coating on the wire was mechanically stable due to the fine and continuous nanofibers formation around the wire with a three dimensional structure. Polyamide (nylon 6), due to its suitable characteristics was used to prepare the unbreakable SPME nanofiber. The scanning electron microscopy (SEM) images of this new coating showed a diameter range of 100-200nm for polyamide nanofibers with a homogeneous and porous surface... 

    Effective factors in the treatment of kerosene-water emulsion by using UF membranes

    , Article Journal of Hazardous Materials ; Volume 161, Issue 2-3 , 2009 , Pages 1216-1224 ; 03043894 (ISSN) Rezvanpour, A ; Roostaazad, R ; Hesampour, M ; Nyström, M ; Ghotbi, C ; Sharif University of Technology
    2009
    Abstract
    The effects of different parameters including membrane type (regenerated cellulose and polysulphone), transmembrane pressure (TMP), the content of oil in the feed, the flow velocity of the feed and pH on the ultrafiltration of an emulsion of kerosene in water were studied. It was found that the important factors affecting ultrafiltration were, in order, membrane type, pressure and oil concentration. The greatest flux at the optimum conditions here of 3 bar, an oil content of 3% (v/v) and with membrane type C30F was predicted as 108 L/(m2 h) that was within the range of the confidence limit of the measured value of 106 L/(m2 h). The normalised FTIR results of the virgin cellulosic membranes... 

    The geometrical characteristics of nickel-based metal organic framework on its entrapment capability

    , Article Journal of Chromatography A ; Volume 1610 , 2020 Javanmardi, H ; Abbasi, A ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Here, a three dimensional nickel–based metal organic framework (MOF) was synthesized via solvothermal and room temperature protocols. In order to study the effects of the synthesis conditions on the physical properties such as pore sizes and shapes of the prepared MOFs, their extraction capabilities were examined. Both MOFs were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, Brunauer–Emmett–Teller and thermogravimetric analyses. Brilliant properties such as porous structure, high surface area and considerable thermal stability make them reasonable candidates to be employed as efficient extractive phases. The efficiency of the... 

    Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water

    , Article Chemosphere ; Volume 264 , 2021 ; 00456535 (ISSN) Ahmadijokani, F ; Tajahmadi, S ; Bahi, A ; Molavi, H ; Rezakazemi, M ; Ko, F ; Aminabhavi, T. M ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Ethylenediamine-functionalized Zr-based metal-organic framework (MOF, UiO-66-EDA) was prepared via Michael addition reaction to investigate its potential for adsorption of heavy metal ions from water. Specifically, the influence of agitation time, solution pH, the dosage of the adsorbent, initial metal ion concentration, temperature, and coexistence of other metal ions was investigated on the removal efficiency of UiO-66-EDA towards Pb(II), Cd(II), and Cu(II) metal ions. The pseudo-second-order kinetic model governed the adsorption of these ions onto the UiO-66-EDA. Langmuir isotherm model matched the experimental isotherm of adsorption with a maximum adsorption capacity of 243.90, 217.39,... 

    Photocatalytic TiO2@MIL-88A (Fe)/polyacrylonitrile mixed matrix membranes: Characterization, anti-fouling properties, and performance on the removal of natural organic matter

    , Article Chemosphere ; Volume 302 , 2022 ; 00456535 (ISSN) Salehian, S ; Mehdipour, M. H ; Fotovat, F ; Mousavi, S. A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Photocatalytic membrane reactors (PMRs), coupling photocatalysts and membranes in a single system, have shown a considerable potential to reduce membrane fouling, which is one of the major drawbacks of using membranes to treat water and wastewater. In this study, the visible light-activated photocatalysts were incorporated into the polyacrylonitrile (PAN) casting solution to synthesize the photocatalytic composite membranes. The physicochemical properties and the morphology of the membranes and photocatalysts were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction analysis (XRD), ultraviolet–visible diffuse reflectance... 

    Electrospun Ag-decorated reduced GO-graft-chitosan composite nanofibers with visible light photocatalytic activity for antibacterial performance

    , Article Chemosphere ; Volume 299 , 2022 ; 00456535 (ISSN) Asgari, S ; Mohammadi Ziarani, G ; Badiei, A ; Setayeshmehr, M ; Kiani, M ; Pourjavadi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The treatment of water contaminated by bacteria is becoming a necessity. The nanomaterials possessing both intrinsic antibacterial properties and photocatalytic activity are excellent candidates for water disinfection. The powdered form of nanomaterials can be aggregated while embedding the nanomaterials into the NFs can overcome the limitation and enhance the photocatalytic activity and transition from UV-light to visiblelight. Here, graphene oxide (GO) was synthesized, grafted to chitosan, and decorated with silver nanoparticles (Ag NPs) to produce Ag-decorated reduced GO-graft-Chitosan (AGC) NPs. The blends of polyacrylonitrile (PAN) and AGC NPs were prepared in various concentrations of...