Loading...
Search for: water-treatment
0.013 seconds
Total 167 records

    Numerical Simulation of Water Filtration from Pollutant Ions Using Nanoporous Graphene Membrane

    , M.Sc. Thesis Sharif University of Technology Rahiminejad, Mohammad (Author) ; Moosavi, Ali (Supervisor) ; Nouri Borujerdi, Ali (Supervisor)
    Abstract
    Water treatment from industrial and domestic pollutants is one of the most important issues in recent decades. In the present research, simulation of water purification using single-layer graphene membrane were studied. The effects of nanopores diameter, applied pressure, concentration of contaminant ions, and functional groups on the amount of filtered water and ion rejection through the membrane were quantified. Contaminant ions including Na+, K+, Mg2+, Ca2+, and Cl- were dissolved in water. Based on the results, by increasing the pore diameter and applied pressure, more water would pass through the membrane. Also it was concluded that pores with functional groups have better performance... 

    The Application of Nano Scale Iron Particle in Water Treatment

    , M.Sc. Thesis Sharif University of Technology Nikroo, Razieh (Author) ; Alem zadeh, Iran (Supervisor) ; Vosoughi, Manouchehr (Supervisor)
    Abstract
    Chlorinated hydrocarbons such as trichloroethylene form a kind of dense non-aqueous phase liquid contaminants in groundwater and soil that are so difficult to remediate. In recent years, many field research has been demonstrated application of nano scale zero valent iron can degrade these contaminants.
    In this research, nZVI particle synthesized by liquid phase reduction method. Nickel (25%wt ) has been added to increase the reduction rate and also reduce intermediate pollutions. However, the combination of a noble metal to nZVI, leads to more rapid oxidation and tendency to agglomeration. So nZVI particles coated by applying a water soluble-starch solution (0.4%wt) as a stabilizer. The... 

    Theoretical and Experimental Study of the Influence of Chemical Environments and Investigation of their Effects on the Kinetics of Redox Reactions using Metal and Metal Oxide Nanocatalyst

    , Ph.D. Dissertation Sharif University of Technology Kohantorabi, Mona (Author) ; Gholami, Mohammad Reza (Supervisor)
    Abstract
    Bimetallic nanoparticles with unique structure, synergistic effect between two metals, and the tunable physical/chemical properties have been used for catalysis. Various methods exist for the staibility, and improvement of the catalytic performance of nanoparticles. In this thesis, different co-catalysts were applied to increase tha staibility, and activity of nanoparticles and metal oxides. In this way, Ni-based bimetallic nanoparticles including CuNi, CoNi, and AgNi, and AgPt with different concentrations were synthesized on the cerium oxide nanorods derived from cerium metal-organic frameworks and magnetic graphene oxide nanosheets, respectively and characterized. The catalytic... 

    Fabrication of Appropriate Membrane for Treatment and Reuse of Grey Water

    , M.Sc. Thesis Sharif University of Technology Gholami, Mohammad (Author) ; Mousavi, Abbas (Supervisor) ; Kariminia, Hamidreza (Supervisor)
    Abstract
    In this study preparation of polymeric membrane for grey water treatment is examined. Grey water is the wastewater that is produced by household activities such as baths, showers and sinks. These sources make 50 to 80 percent of total household wastewater. Because of low contamination of these kind of wastewater, they can be treated with Nanofiltration membrane process. Membrane used for treatment is thin composite polyamide membrane. This membrane is made with interfacial polymerization reaction of Piperazine and m-phenylenediamine as amine monomer and trimesoyl chloride as chloride acid monomer on a Polysulfone ultrafiltration membrane. In order to promote the flux, Polyethylene glycol is... 

    Simulation of Water Purification with Micro and Nano Particles in Magnetic Field

    , M.Sc. Thesis Sharif University of Technology Asghari, Elmira (Author) ; Moosavi, Ali (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    In this project, transport and absorption of magnetic particles for the purpose of water purification has been simulated. The used magnetic particles must be collected; otherwise they would cause additional pollution. Therefore, separation and absorption of particles is vital. The particles can be collected with an applied magnetic field. In this study different kinds of magnetic fields are applied and effect of different parameters, such as particle diameter, Reynolds number and magnetic field are considered. By increasing particle diameter and magnetic filed strength, the absorption efficiency increases. But by increasing Reynolds number absorption efficiency decreases. The particle with... 

    Synthesis and Investigation of Physical Properties of PVDF/Graphene Nanostructured Membranes for Molecular Sieving

    , M.Sc. Thesis Sharif University of Technology Khan Sanami, Mehran (Author) ; Esfandiar, Ali (Supervisor)
    Abstract
    Poly vinylidene fluoride (PVDF) as a fluorine polymer with acceptable thermal, chemical and physical property attractive create attention in membrane technology for water treatment application. However, with differential surface free energy between PVDF and water (∆G_s=30 mJ/m^2) PVDF polymer is divided as a hydrophobic materials, that is one of the basic problem for PVDF polymer. Due to its hydrophobicity the water molecules repulsion away from hydrophobic PVDF membrane surface as a spontaneous process with an entropy increasing and therefore pollutant molecules with hydrophobic functional group have tendency to adsorb onto membrane surface and dominate the boundary layer. In recent years... 

    Synthesis and Evaluation of Zeolitic Janus Micromotors for Water Remediation

    , Ph.D. Dissertation Sharif University of Technology Abedini, Fatemeh (Author) ; Madah Hosseini, Hamid Reza (Supervisor)
    Abstract
    Novel zeolite-based micromotors consisted of silver-exchanged zeolite core and three different partial catalytic coatings (Mg/Au, Pt and Ag) were synthesized to eliminate the biological and chemical contamination from water in a fast and efficient way. These engines are benefited by the adsorption capacity and antibacterial activity of silver-zeolites in combination with the autonomous propulsion of catalytic micromotors. The remarkable bactericidal capacity of these particles relies on reactive silver ion released from zeolite and accordingly, increased chance of contact with bacteria during movement. These motors showed rapid killing of bacteria and effective elimination of the Pseudomonas... 

    Synthesis, Characterization and Applications of Antibacterial Metal-Organic Framework Nanocomposites for Water Remediation

    , M.Sc. Thesis Sharif University of Technology Talebi Deylamani, Sara (Author) ; Borghei, Mehdi (Supervisor) ; Yaghmaei, Soheila (Supervisor) ; Ghobadi Nejad, Zahra (Co-Supervisor)
    Abstract
    Contaminants in drinking water, including microbial contaminants, have a great impact on the health of people in the community and can seriously threaten public health. In recent years, diseases caused by pathogenic bacteria due to the consumption of contaminated water have led to many deaths. As a result, water treatment has been one of the most important human concerns. Among the new water treatment technologies, metal-organic(MOF) frameworks are a new generation of porous materials that have properties such as high surface area, water stability and functionality due to their dual structure. As a result, they are widely used today in various scientific fields, including water purification.... 

    Improving Photocatalytic Activity by Preparation of Magnetically Separable N-doped rGO/NiFe2O4@Ti-doped ZnOTernary Nanocomposite

    , M.Sc. Thesis Sharif University of Technology Abdi, Zahra (Author) ; Nemati, Ali (Supervisor) ; Khachatourian, Adrine Malek (Supervisor)
    Abstract
    The N-doped rGO/NiFe2O4@Ti-doped ZnO as a novel ternary nanocomposite with magnetic recyclable was obtained by a facile and low-cost hydrothermal method. The structure, morphology, and optical as well as magnetic properties of synthesized nanocomposite were analyzed using the X-ray diffraction (XRD), Fourier-transform infrared spectra (FTIR), Raman spectroscopy, Emission scanning electron microscopy (FESEM) with Energy dispersive spectra, Transmission electron microscopy (TEM), UV-vis diffusive reflectance spectra, and Vibrating sample magnetometer (VSM). The photocatalytic activity was determined by the degradation of Methylene blue (MB) and Methylene orange (MO) dyes under visible light... 

    Alginate/PVP/Pomegranate Seed Hydrogels as Bio-sorbents of Water Pollutants

    , M.Sc. Thesis Sharif University of Technology Hashemzadeh, Payam (Author) ; Frounchi, Masoud (Supervisor) ; Mollaabasi, Payam (Co-Supervisor)
    Abstract
    In the past decades, hydrogels have been used as an adsorbent with high potential to remove pollutants in water. Hydrogels are three-dimensional polymer networks that have the ability to absorb and store water and water-soluble compounds due to the presence of hydrophilic functional groups in their structure. Different particles with unique characteristics can be used to increase the efficiency of hydrogel absorption. Based on the type of pollutant, hydrogels are divided into three different forms, including particles, films and nanocomposites. In this research, the absorption effect of metal cations as well as the absorption kinetics of polyvinyl pyrrolidine-based hydrogels, sodium... 

    Response surface methodology for modeling and optimizing the treatment of synthetic starchy wastewater using hydrophilic PES membrane

    , Article Desalination and Water Treatment ; Volume 51, Issue 37-39 , 2013 , Pages 7036-7047 ; 19443994 (ISSN) Hedayati Moghaddam, A ; Shayegan, J ; Sargolzaei, J ; Bahadori, T ; Sharif University of Technology
    Abstract
    In this work, the process of starch removal from starchy wastewater using a hydrophilic polyethersulfone membrane was investigated. The pore size of the membrane was 0.65 μm and the pattern of stream in plate and frame handmade membrane module was cross-flow. To design the layout of the experiments, response surface methodology was applied. The performance of the filtration process was evaluated by calculating the (chemical oxygen demand) COD removal percentage (rejection factor) and permeate flux. In this study, five operative parameters were investigated, including trans-membrane pressure, flow rate and temperature of feed, pH, and the COD concentration of starch wastewater. Two models... 

    Removal of lignin, COD, and color from pulp and paper wastewater using electrocoagulation

    , Article Desalination and Water Treatment ; Volume 57, Issue 21 , 2016 , Pages 9698-9704 ; 19443994 (ISSN) Azadi Aghdam, M ; Kariminia, H. R ; Safari, S ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    Electrocoagulation is an effective, fast, and economic method for treatment of industrial wastewaters. In this study, effects of different parameters including electrolysis time, voltage, and pH on the reduction of chemical oxygen demand (COD), lignin, and color in pulp and paper wastewaters were studied. Iron and aluminum were used as anode and cathode electrodes, respectively. Under the optimal conditions (pH 5, 60 min, 10 V), this treatment method led to 85% removal of COD and 78.5% removal of lignin. Furthermore, clear treated water with complete color removal was generated that suggests the application of electrocoagulation for industrial wastewater treatment, especially in pulp and... 

    Extraction of theoretical equation for the gamma ray buildup factor of the three-layered spherical shield

    , Article Journal of Instrumentation ; Volume 14, Issue 4 , 2019 ; 17480221 (ISSN) Rabi'ee, A ; Hosseini, S. A ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    In the previous researches, several theoretical equations were presented for calculation of buildup factor of the single layer shields. Also, the theoretical equations were offered for the two-layered shield that consist of the known materials. For other possible modes of the multi-layered shield, the buildup factor are usually calculated via experimental or simulated data. The purpose of present study is the extraction of the new theoretical equation for the gamma ray buildup factor of three-layered spherical shield made of water, concrete and iron based on the Monte Carlo calculation. To this end, the gamma ray buildup factor of the three-layered spherical shield is calculated via... 

    Optimization of synthesis conditions of a novel carrageenan-based superabsorbent hydrogel by taguchi method and investigation of its metal ions adsorption

    , Article Journal of Applied Polymer Science ; Volume 107, Issue 5 , 2008 , Pages 2970-2976 ; 00218995 (ISSN) Pourjavadi, A ; Amini Fazl, M. S ; Barzegar, Sh ; Sharif University of Technology
    2008
    Abstract
    The Taguchi method, a robust experimental design, was used for optimization of synthesis of a novel biopolymer-based superabsorbent hydrogel, kappa-carrageenan (K-C)-g-acrylic acid (AA)-co-2-acrylamido-2- methylpropanesulfonic acid (AMPS). The Taguchi method was applied for the experimental and standard 18 orthogonal arrays (OA) with seven factors and three levels for each factor. In the synthesis of the superabsorbent, N,N'-methylene bisacrylamide (MBA) as crosslinker, ammonium persulfate (APS) as initiator, monomer ratio (AA/AMPS), K-C concentration, Total Monomer, neutralization percent (NU), and reaction temperature were used as important factors. After analyzing with analysis of... 

    Treatment of welding electrode manufacturing plant wastewater using coagulation/flocculationnanofiltration as a hybrid process

    , Article Brazilian Journal of Chemical Engineering ; Volume 28, Issue 1 , Mar , 2011 , Pages 73-79 ; 01046632 (ISSN) Golestani, H. A ; Mousavi, M ; Borghei, M ; Sharif University of Technology
    Abstract
    High water consumption and water scarcity make industrial wastewater reuse necessary, especially in those industries characterized by polluted effluents such as welding electrode manufacturing industries. The present paper investigates the coupling of coagulation-flocculation with nanofiltration (NF) to recycle water and reuse it in the process. First, the effect of different concentrations of a mixture of alum (Al2(SO4) 3.18H2O) and ferric chloride (FeCl3) on the pretreatment process was closely studied. Then the NF process was applied for complementary treatment. The NF results show that, by increasing both flow rate and transmembrane pressure (TMP), permeate flux is increased. The NF... 

    Produced Water Treatment with Simultaneous Bioenergy Production Using Novel Bioelectrochemical Systems

    , Article Electrochimica Acta ; Volume 180 , 2015 , Pages 535-544 ; 00134686 (ISSN) Ghasemi Naraghi, Z ; Yaghmaei, S ; Mardanpour, M. M ; Hasany, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    The present study investigated the biological treatment of produced water in a microbial electrochemical cell (MXC). The main objectives were to develop a novel spiral microbial electrochemical cell (SMXC) and test its performance for produced water treatment under highly saline conditions (salinity > 200000 ppm). The bioelectrochemical performance of the system was also evaluated in terms of power and hydrogen production over time. The comparatively inexpensive material and ease of application increased the feasibility of the SMXC configuration for produced water treatment. Optimal SMXC performance as a microbial fuel cell was achieved at a maximum open circuit potential of 330 mV, maximum... 

    Influence of ion interaction on lead removal by a polyamide nanofiltration membrane

    , Article Desalination ; Volume 362 , April , 2015 , Pages 84-92 ; 00119164 (ISSN) Mehdipour, S ; Vatanpour, V ; Kariminia, H. R ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Retention of lead(II) ions on a polyamide nanofiltration membrane was investigated. Effects of different factors including operating pressure, lead ion concentration, anion nature, pH and composition of feed on the lead ion rejection were studied. The solutions used consisted of Pb(NO3)2, PbCl2 and PbSO4 in the single-salt solution system and Pb(NO3)2, Cu(NO3)2, Zn(NO3)2, Cd(NO3)2, NaNO3 and NH4NO3 in the binary-salt solution system. The influence of divalent and monovalent cations including cadmium, copper, zinc, sodium and ammonium on the rejection of lead ion was examined. The transmembrane pressure and lead ion concentration varied between 10 and 40bar and 20 and 400mg Pb2+/L,... 

    Optimal selection of an integrated produced water treatment system in the upstream of oil industry

    , Article Process Safety and Environmental Protection ; Volume 117 , 2018 , Pages 67-81 ; 09575820 (ISSN) Bagheri, M ; Roshandel, R ; Shayegan, J ; Sharif University of Technology
    Institution of Chemical Engineers  2018
    Abstract
    Produced water (PW), water extracted along with oil, can cause important environmental challenges due to its high volume and salinity and is considered a key factor in the economic exploitation of oil fields. Therefore, making use of a cost-effective integrated system of wastewater treatment is a fundamental requirement in oil and gas industries. In this paper, the integrated PW treatment system is presented using superstructure-based mathematical optimisation methodology which is aimed at minimising the total annual cost. Two distinct scenarios of injection and reuse in industrial scale are considered to propose an efficient and optimal integrated system. The results show that, despite the... 

    Solar-assisted bacterial disinfection and removal of contaminants of emerging concern by Fe2+-activated HSO5- vs. S2O82- in drinking water

    , Article Applied Catalysis B: Environmental ; Volume 248 , 2019 , Pages 62-72 ; 09263373 (ISSN) Rodríguez Chueca, J ; Giannakis, S ; Marjanovic, M ; Kohantorabi, M ; Gholami, M. R ; Grandjean, D ; de Alencastro, L. F ; Pulgarín, C ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    This research demonstrates the feasibility to enhance solar disinfection (SODIS) treatment by addition of peroxymonosulfate (PMS) and peroxydisulfate (PDS) by the generation of sulfate (and hydroxyl) radicals through different activation routes. The different promoters were i) sunlight irradiation, ii) mild heat (40 °C), and iii) μM amounts of Fe2+, all present during actual field SODIS experiments, or voluntarily added alongside PMS/PDS. In a first approach, the promoters were studied separately, in pairs and finally all together in a combined process (CP). In all the cases, PMS showed a higher efficiency than PDS in E. coli removal, requiring lower concentration and a faster reaction time... 

    Influence of ultrasonic cell disintegration on excess sludge reduction in a Moving Bed Biofilm Reactor (MBBR)

    , Article Journal of Environmental Chemical Engineering ; Volume 7, Issue 2 , 2019 ; 22133437 (ISSN) Tahmasebian, S ; Borghei, S. M ; Torkaman, M ; Hasani Goudarzi, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Sludge handling is a common issue in all biological wastewater treatment methods. In this study, sonication technique as a state-of-the-art technology has been applied to a continuous MBBR system with the aim of sludge reduction. A novel configuration of MBBR with an additional recycle stream of sonicated sludge was used as the experimental setup. Based on exposed energy and sludge disruption performance, optimized sonication density and exposure time were obtained 1.5 W/mL and 15 min, respectively. This condition provided 42.2% increase in soluble COD as a result of sludge disintegration. Our results revealed that the performance of MBBR and excess sludge reduction were affected by...