Loading...
Search for: shear-stress
0.007 seconds
Total 207 records

    Effect of Initial Static Shear Stress on Liquefaction Resistance of Babolsar Sand Using Cyclic Simple Shear Tests

    , M.Sc. Thesis Sharif University of Technology Pouragha, Mehdi (Author) ; Haeri, Mohsen (Supervisor)
    Abstract
    Initial static shear stress caused by slopes or nearby structures' foundations can affect the behavior of the soil which is concerned many investigators during previous three decade. In this investigation, the effect of initial static shear stress on the liquefaction resistance of Babolsar sand has been probed using cyclic simple shear tests. Three different initial relative densities (Dr0=20%, 40% and 60%) and three different initial normal stresses (σv0= 50, 150 and 250 kPa) were considered in tests and four various initial static shear ratios (α) ranging between 0.0 and 0.3 were applied which leads to more than 190 distinct experiments. All tests were conducted under constant volume and... 

    Stem Cell Culture in Bioreactor

    , M.Sc. Thesis Sharif University of Technology Hosseini Zand, Hasti (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor) ; Ebrahimi, Marziye (Supervisor) ; Yaghmaei, Soheyla (Co-Advisor)
    Abstract
    Static culture systems, such as well-plates, T-Flasks and gas-permeable blood bags are restricted by their limited number of hematopoietic stem cells (HSCs) available. Hence, stirred culture systems are alternative options due to their appropriate culture conditions. Ex-vivo expansion of HSCs in suspension bioreactors has been successfully developed in recent years. The purpose of this study is comparing HSCs expansion in bioreactor with reciprocating impeller and static culture, investigation the effect of rotational speed changes in suspension culture on HSCs expansion and comparing the expansion potential of static and suspension cultures with rotational movement.
    Expansion of... 

    Control of Blood Flow by Endothelial-Secreted Biochemicals NO, Ca2+ and Growth Factor VEGF: Numerical Simulation Using Lattice Boltzmann-Finite Difference Hybrid

    , M.Sc. Thesis Sharif University of Technology Asghanian, Alireza (Author) ; Firoozabadi, Bahar (Supervisor)
    Abstract
    Endothelial cells that cover the inner wall of blood cells and are sensitive to receiving mechanical signals play important role in regulating many vital activities of the human body especially the function of the cardiovascular system. One of the factors affecting the mechanical functions of these cells is the shear stress applied to them. Due to blood velocity increasing or decreasing the endothelial cells shear stress change and leads to some chemical reactions and finally releasing biochemical substances including Nitrogen-Monoxide and Calcium-ion. Nitrogen-Monoxide produced by endothelial cells by affecting the smooth muscle cells in the vessel wall causes dilating of the vessel wall,... 

    Numerical Study of Vascular Shear Stress Effects on Blood Clotting Processes

    , M.Sc. Thesis Sharif University of Technology Asgharian, Navid (Author) ; Firoozabadi, Bahar (Supervisor)
    Abstract
    Blood clotting and clot formation in damaged vessels are vital mechanisms of the body. Any disorder in performing this mechanism leads to various problems such as excessive bleeding or, on the contrary, causes vascular occlusion and diseases such as embolism. Due to the importance of this issue, extensive research has been done to understand this phenomenon and the factors affecting it. In this thesis, the effect of shear stress, coagulation factor concentration and wound location in coronary bifurcation on clot formation and growth and its interaction with velocity field is numerically investigated. Blood flow is modeled non-Newtonian with Carreau-Yasuda model. Various chemical species... 

    Non-linear creep modeling of short-fiber composites using Hermite polynomials, hyperbolic trigonometric functions and power series

    , Article Comptes Rendus - Mecanique ; Volume 341, Issue 7 , 2013 , Pages 592-604 ; 16310721 (ISSN) Mondali, M ; Monfared, V ; Abedian, A ; Sharif University of Technology
    2013
    Abstract
    A novel analytical model is presented for analyzing the steady-state creep in short-fiber composites under axial load utilizing the previous shear-lag theory, the imaginary fiber technique and also new approaches of Hermite polynomials, hyperbolic trigonometric functions and power series. The steady-state creep behavior of the matrix is described by an exponential law, while the fibers behave elastically. In this model, in spite of the previous researches, some unknowns such as shear stress, displacement rates, and creep strain rates are correctly determined in all regions of the unit cell without using any further assumptions. In comparison with previous analytical approaches, the results... 

    Modeling of photoplethysmography signal for quantitative analysis of endothelial cells during reactive hyperemia

    , Article 2012 19th Iranian Conference of Biomedical Engineering, ICBME 2012 ; 2012 , Pages 174-178 ; 9781467331302 (ISBN) Shiri, F ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    2012
    Abstract
    In this study, at first the cardiovascular system is modeled based on the 1D method and then the simulation of the reactive hyperemia experiment has been applied on the model. In this simulation, by applying a cuff at the brachial artery, the flow downstream of the cuff is occluded. Then with releasing the cuff immediately, a large amount of shear stress, about 4 times the basal amount, is applied downstream of the cuff and consequently to the endothelial cells in a very short moment. Considering a reported experimental transfer function between shear stress and vasodilation, the increase of the artery diameter due to the sudden increase of the shear stress is obtained. Finally, the... 

    An analytical solution for optimum design of shrink-fit multi-layer compound cylinders

    , Article International Journal of Applied Mechanics ; Volume 4, Issue 4 , December , 2012 ; 17588251 (ISSN) Sharifi, M ; Arghavani, J ; Hematiyan, M. R ; Sharif University of Technology
    2012
    Abstract
    In this paper, employing an analytical method, optimum design of multi-layer compound cylinders is investigated. To this end, considering Tresca criterion, maximum shear stress in each layer is minimized. Analytical relations for optimum values of a layer dimension, residual pressures and radial interferences are derived. A technique for shrink-fitting of layers is also proposed and relationships for radial interferences, residual pressures and required temperature differences during the shrink-fitting process are derived. Three different examples are presented to show the effectiveness of the proposed method. It is shown that increasing the number of layers makes shear stress distribution... 

    Numerical simulations of turbulent flow around side-by-side circular piles with different spacing ratios

    , Article International Journal of River Basin Management ; Volume 15, Issue 2 , 2017 , Pages 227-238 ; 15715124 (ISSN) Beheshti, A. A ; Ataie Ashtiani, B ; Dashtpeyma, H ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    Numerical simulations of the turbulent flow around single and side-by-side piles at different spacing ratios (centre-to-centre distance to the pile diameter) with flow Reynolds number of 105 on the fixed flat-bed are presented. The calculations are performed using the computational fluid dynamics model, FLOW-3D, which solves the Navier–Stokes equations in three dimensions with a finite-volume method. The numerical results of time-averaged flow patterns around single and side-by-side piles are validated using the available experimental measurements. At the downstream of the single pile, dimensionless vortex shedding frequency (Strouhal number) is estimated as 0.22. The maximum values of bed... 

    Effect of iron particle size on the diffusion bonding of Fe-5%Cu powder compact to wrought carbon steels

    , Article Materials and Design ; Volume 29, Issue 2 , 2008 , Pages 411-417 ; 02613069 (ISSN) Fillabi, M. G ; Simchi, A ; Kokabi, A. H ; Sharif University of Technology
    Elsevier Ltd  2008
    Abstract
    In the present work, diffusion bonding of Fe-5%Cu powder compact to wrought carbon steels was studied. Effects of iron particle size and carbon content of the solid component on the bond strength, which is the maximum shear stress required to obtain separation at the interface, were investigated. Atomized iron powders with the mean particle size of 36, 56, 90, 106, and 148 μm and wrought steels with 0.22, 0.33, and 0.47 wt% carbon content were used. To evaluate the bonding zone, "ring shear" test, standard metallography technique, and micro-hardness test were employed. The results showed a profound effect of carbon content of the solid steel on the diffusion bonding process. It is suggested... 

    Numerical investigations of heat transfer and pressure drop of condensation in streamwise-periodic herringbone-type plate channels

    , Article International Journal of Heat Exchangers ; Volume 7, Issue 1 , 2006 , Pages 163-180 ; 15245608 (ISSN) Akbari, M ; Farhanieh, B ; Sharif University of Technology
    2006
    Abstract
    Turbulent fully developed periodic condensation heat transfer and pressure drop in herringbone-type plate heat exchangers for R134a and steam were numerically investigated. A mixture model was introduced and the equations governing the two phase flow were simplified. Thus a single phase periodic flow with mixture properties was solved for R134a. For Steam a separate empirical model was used. The governing equations were solved numerically by a finite-volume method for elliptic flows in complex geometries using collocated variable arrangement. The influence of mass flux and vapor quality on frictional pressure drop for refrigerant was investigated. The heat transfer was studied using a... 

    Approach to analytic solution of navier-stokes equation utilizing adomian decomposition method, jet impinging flow application

    , Article WSEAS Transactions on Mathematics ; Volume 5, Issue 5 , 2006 , Pages 507-514 ; 11092769 (ISSN) Najafi, M ; Taeibi Rahni, M ; Javadi, K. H ; Hosseinzadeh, S. F ; Sharif University of Technology
    2006
    Abstract
    Adomian decomposition method was employed to obtain an approximate solution to two-dimensional and axisymmetric jet impinging flows in this work. Assumptions have been made to reduce the related full Navier-Stokes equations to a non-linear ordinary differential equation. A trial and error strategy has been used to obtain the constant coefficient in the approximated solution. Velocity Profiles, Shear stresses and displacement thickness were chosen to be compared with accurate numerical data. Sensitivity of the results to the number of terms have been discussed. The results showed for open boundary problems having at least one boundary condition at infinity, the applicable range of the... 

    Electrowetting induced droplet generation in T-junctions

    , Article Journal of Heat Transfer ; Volume 143, Issue 5 , 2021 ; 00221481 (ISSN) Merdasi, A ; Moosavi, A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2021
    Abstract
    In this study, droplet generation in a T-junction fluidic channel device was studied by using electrowetting actuation with the consideration of different droplet forming regimes. For this purpose, the finite element method (FEM) was used to solve the unsteady Naiver-Stokes equation. In addition, the level set method was applied to capture the interface between two phases. It was shown that there was a good agreement between obtained data and other work during the process of droplet generation in the absence of electrowetting actuation which results in the decrease in the size of the droplet with increasing the velocity ratios. In the shearing regime, the effectiveness of electrowetting on... 

    Critical state concepts for a cemented gravely sand

    , Article Electronic Journal of Geotechnical Engineering ; Volume 10 E , 2005 ; 10893032 (ISSN) Hamidi, A ; Haeri, S. M ; Sharif University of Technology
    2005
    Abstract
    The shear behavior of a cemented gravely sand that can be considered as the representative of Tehran alluvium has been studied using triaxial equipment. Artificially cemented samples were prepared using gypsum plaster as the cementing agent. The plaster was mixed with the base soil at the weight percentages between 1.5 and 6. The critical state concepts were used to illustrate the mechanical behavior of tested soil. © 2005 ejge  

    The behaviour of an artificially cemented sandy gravel

    , Article Geotechnical and Geological Engineering ; Volume 23, Issue 5 , 2005 , Pages 537-560 ; 09603182 (ISSN) Haeri, S. M ; Hosseini, S. M ; Toll, D. G ; Yasrebi, S. S ; Sharif University of Technology
    2005
    Abstract
    The major section of the city of Tehran, Iran has been developed on cemented coarse-grained alluvium. This deposit consists of gravely sand to sandy gravel with some cobbles and is dominantly cemented by carbonaceous materials. In order to understand the mechanical behaviour of this soil, a series of undrained triaxial compression tests and unconfined compression tests were performed on uncemented and artificially cemented samples. Portland cement type I was used as the cementation agent for preparing artificially cemented samples. Uncemented samples and lightly cemented samples (1.5% cement) tested at high confining pressure showed contractive behaviour accompanied with positive excess pore... 

    A numerical study of the effects of blood rheology and vessel deformability on the hemodynamics of carotid bifurcation

    , Article Scientia Iranica ; Volume 19, Issue 1 , February , 2012 , Pages 119-125 ; 10263098 (ISSN) Toloui, M ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    2012
    Abstract
    Hemodynamic factors, such as Wall Shear Stress (WSS), play a substantial role in arterial diseases. In the larger arteries, such as the carotid artery, interaction between the vessel wall and blood flow affects the distribution of hemodynamic factors. In the present study, both rigid-wall and deformable-wall models are developed in a 3D numerical simulation to assess the effectiveness of arterial rigidity on worsening hemodynamics, especially WSS. Two different rheological models (Newtonian and CarreauYasuda) have been employed to evaluate the influence of blood, non-Newtonian properties, as well. The importance of vessel wall deformability was compared with the rheological model of blood.... 

    Fsi simulation of a healthy coronary bifurcation for studying the mechanical stimuli of endothelial cells under different physiological conditions

    , Article Journal of Mechanics in Medicine and Biology ; Volume 15, Issue 5 , October , 2015 ; 02195194 (ISSN) Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2015
    Abstract
    Atherosclerosis is a world-spread and well-known disease. This disease strongly relates to the endothelial cells (ECs) function. Normally, the endothelial cells align in the flow direction in the atheroprotected sites; however, in the case of atheroprone sites these cells orient randomly. The mechanical stimuli such as wall shear stress and strains could determine the morphology and function of the endothelial cells. In the present study, we numerically simulated the left main coronary artery (LCA) and its branches to left anterior descending (LAD) and left circumflex coronary (LCX) artery using fluid-structure interaction (FSI) modeling. The results were presented as longitudinal and... 

    Influence of the angle of incident shock wave on mixing of transverse hydrogen micro-jets in supersonic crossflow

    , Article International Journal of Hydrogen Energy ; Volume 40, Issue 30 , August , 2015 , Pages 9590-9601 ; 03603199 (ISSN) Barzegar Gerdroodbary, M ; Jahanian, O ; Mokhtari, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    A three-dimensional numerical study has been performed to investigate the influence of angle of shock waves on sonic transverse Hydrogen micro-jets subjected to a supersonic crossflow. This study focuses on mixing of the Hydrogen jet in a Mach 4.0 crossflow with a global equivalence ratio of 0.5. Flow structure and fuel/air mixing mechanism were investigated numerically. Parametric studies were conducted on the angle of shock wave by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport turbulence model. Complex jet interactions were found in the downstream region with a variety of flow features depending upon the angle of shock incident. These flow... 

    The influence of micro air jets on mixing augmentation of transverse hydrogen jet in supersonic flow

    , Article International Journal of Hydrogen Energy ; Volume 41, Issue 47 , 2016 , Pages 22497-22508 ; 03603199 (ISSN) Barzegar Gerdroodbary, M ; Mokhtari, M ; Fallah, K ; Pourmirzaagha, H ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper, numerical simulation is performed to investigate the effects of micro air jets on mixing of the micro hydrogen jet in a transverse supersonic flow. The fundamental flow feature of the interaction between an array of fuel and air jets is investigated in a Mach 4.0 crossflow with a fuel global equivalence ratio of 0.5. Parametric studies were conducted on the various air jet conditions by using the Reynolds-averaged Navier–Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Numerical study of eight streamwise transverse sonic fuel and air jets in a fully turbulent supersonic flow revealed an extremely complex feature of fuel and air jet interaction. The... 

    A mechanical model for morphological response of endothelial cells under combined wall shear stress and cyclic stretch loadings

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 15, Issue 5 , 2016 , Pages 1229-1243 ; 16177959 (ISSN) Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    Springer Verlag 
    Abstract
    The shape and morphology of endothelial cells (ECs) lining the blood vessels are a good indicator for atheroprone and atheroprotected sites. ECs of blood vessels experience both wall shear stress (WSS) and cyclic stretch (CS). These mechanical stimuli influence the shape and morphology of ECs. A few models have been proposed for predicting the morphology of ECs under WSS or CS. In the present study, a mathematical cell population model is developed to simulate the morphology of ECs under combined WSS and CS conditions. The model considers the cytoskeletal filaments, cell–cell interactions, and cell–extracellular matrix interactions. In addition, the reorientation and polymerization of... 

    Coupled thermo-poroelastic analysis of drilling induced mechanical damage in fractured rocks

    , Article Journal of Petroleum Science and Engineering ; Volume 146 , 2016 , Pages 601-616 ; 09204105 (ISSN) Gomar, M ; Goodarznia, I ; Shadizadeh, S. R ; Sharif University of Technology
    Elsevier  2016
    Abstract
    The wellbore represents one of the most crucial components in the hydrocarbon and geothermal reservoir system, as it is the sole conduit to the reservoir for fluid production or injection. Therefore, predicting and controlling of the permeability variations close to the wellbore has been one of the most challenging issues in geothermal and petroleum reservoir systems. A new method is presented to model fracture permeability changes during drilling in fractured rocks. The approach includes finite element method (FEM) for fully coupled thermo-poroelastic analysis of stress distribution around borehole and displacement discontinuity method (DDM) to model fracture deformation. Four models of...