Loading...
Search for: reservoirs--water
0.011 seconds
Total 115 records

    Pareto-based robust optimization of water-flooding using multiple realizations

    , Article Journal of Petroleum Science and Engineering ; Volume 132 , 2015 , Pages 18-27 ; 09204105 (ISSN) Yasari, E ; Pishvaie, M. R ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Robust optimization (RO) approach is inherently a multi-objective paradigm. The proposed multi-objective optimization formulation would attempt to find the optimum - yet robust - water injection policies. Two multi-objective, Pareto-based robust optimization scenarios have been investigated to encounter the permeability uncertainties. These multi-objective RO scenarios have been done based on a small representative set of realizations but they have introduced optimum points that could be reliable for the original set of realizations either. In both scenarios, the desired objective functions are expected value and variance of Net Present Value (NPV). The underlying RO scenarios have been done... 

    Modeling of point and non-point source pollution of nitrate with SWAT in the Jajrood river watershed, Iran

    , Article International Agricultural Engineering Journal ; Volume 19, Issue 2 , 2010 , Pages 23-31 ; 08582114 (ISSN) Jamshidi, M ; Tajrishy, M ; Maghrebi, M ; Sharif University of Technology
    2010
    Abstract
    The Latian dam reservoir is one of the most important drinking water sources for Tehran, Iran. Nitrate is a major water quality problem in this reservoir. The Jajrood River, the most important water source for the reservoir, discharges large amounts of nutrients to it every year including high levels of nitrate, a pollutant of particular concern. This study presents the results obtained from simulating different point source and nonpoint source impacts on the fate and transport of nitrate in the 470 km2 Jajrood watershed using the Soil and Water Assessment Tool (SWAT) model version 2000 (SWAT2000). The SWAT model was calibrated and validated over an extended time period (1997-2005) for this... 

    Conceptualization of karstic aquifer with multiple outlets using a dual porosity model

    , Article Groundwater ; Volume 55, Issue 4 , 2017 , Pages 558-564 ; 0017467X (ISSN) Hosseini, S. M ; Ataie Ashtiani, B ; Sharif University of Technology
    Abstract
    In this study, two conceptual models, the classic reservoir (CR) model and exchange reservoirs model embedded by dual porosity approach (DPR) are developed for simulation of karst aquifer functioning drained by multiple outlets. The performances of two developed models are demonstrated at a less developed karstic aquifer with three spring outlets located in Zagros Mountain in the south-west of Iran using 22-years of daily data. During the surface recharge, a production function based on water mass balance is implemented for computing the time series of surface recharge to the karst formations. The efficiency of both models has been assessed for simulation of daily spring discharge during the... 

    A comparison between monitoring and analysis of Taleghan rockfill dam during construction

    , Article Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering, 5 October 2009 through 9 October 2009 ; Volume 3 , 2009 , Pages 2088-2091 ; 9781607500315 (ISBN) Haeri, S. M ; Faghihi, D ; Sharif University of Technology
    Abstract
    The construction of 103 m high Taleghan rockfill dam in Iran has recently been completed and reservoir impounding has also recently been started. The behavior of different sections of the dam have been monitored during construction using various devices such as settlement gauges, earth pressure cells and pore pressure piezometers. A comprehensive finite element study has been implemented in this regard as well to study the behavior of Taleghan rockfill dam during construction with consideration of unsaturated behavior of the materials of the dam. A 2D coupled analysis was performed using ABAQUS software. The behavior of the materials of the core and rockfill were assumed to follow Modified... 

    Flow physics exploration of surface tension driven flows

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 518 , 2017 , Pages 30-45 ; 09277757 (ISSN) Javadi, K ; Moezzi Rafie, H ; Goodarzi Ardakani, V ; Javadi, A ; Miller, R ; Sharif University of Technology
    Abstract
    Surface tension driven passive micro-pumping relies mainly on the surface tension properties. To have control over surface tension driven passive micro-pumps (STD-PMPs), it is essential to understand the physical background of the fluid flow in these pumps. Hence, the purpose of this work is to give an exploration of the flow physics of a STD-PMP. In this regard, computer simulation is used to give detailed information about the flow pattern and physical phenomena at different conditions. To this end, a droplet of water, with a specified diameter, is placed onto an entry port connected to another droplet at the exit port via a microchannel. The results indicate that the pumping process, in... 

    Experimental investigation of the influence of fluid-fluid interactions on oil recovery during low salinity water flooding

    , Article Journal of Petroleum Science and Engineering ; Volume 182 , 2019 ; 09204105 (ISSN) Mokhtari, R ; Ayatollahi, S ; Fatemi, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    This study aims to investigate the role of fluid-fluid interactions during low salinity water flooding, using crude oil from an Iranian oil reservoir. To minimize the effects of mineral heterogeneity and wettability alteration, a synthetic sintered glass core was utilized and all coreflooding experiments were performed at low temperatures without any aging process. The effect of fluid-fluid interactions were investigated in both secondary and tertiary injection modes. pH measurements as well as UV-Vis spectroscopy and interfacial tension (IFT) analysis were performed on the effluent brine samples. Results: show that fluid-fluid interactions, mainly the dissolution of crude oil polar... 

    The impact of salinity on ionic characteristics of thin brine film wetting carbonate minerals: An atomistic insight

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 571 , 2019 , Pages 27-35 ; 09277757 (ISSN) Koleini, M. M ; Badizad, M. H ; Kargozarfard, Z ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Connate water has been coexisting with oil and mineral for centuries within underground reservoirs. The oil recovery techniques, such as low salinity water injection, disturb this prolonged equilibrium state of oil/brine/rock system. However, a thorough understanding of this complex equilibrium in the reservoir is still lacking. In this study, we performed molecular dynamics simulations to provide quantitative comprehension of the thin brine film characteristics that wets carbonate reservoir rocks at molecular level. While an electric double layer is formed at the interface of calcite/low salinity water, the ions in the high saline water form several aggregates of ions. We found that these... 

    Effect of salinity and ion type on formation damage due to inorganic scale deposition and introducing optimum salinity

    , Article Journal of Petroleum Science and Engineering ; Volume 177 , 2019 , Pages 270-281 ; 09204105 (ISSN) Ghasemian, J ; Riahi, S ; Ayatollahi, S ; Mokhtari, R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Smart water injection is recognized as an effective EOR process to alter the wettability and interfacial tension to obtain higher micro/macro sweep efficiencies. This water contains reactive ions such asMg2+, Ca2+ andSO42- which can act as potential-determining ions and change the surface charge of calcite rocks. One of the major concerns in the execution of an effective water-flood process, especially in tight carbonate reservoirs, is the chemical incompatibility between the formation brine and the injecting water. In the present study, laboratory fluid compatibility tests were carried out and software simulation was done to investigate the most important challenges of the water-flooding... 

    Model development for MEOR process in conventional non-fractured reservoirs and investigation of physico-chemical parameter effects

    , Article Chemical Engineering and Technology ; Volume 31, Issue 7 , 2008 , Pages 953-963 ; 09307516 (ISSN) Behesht, M ; Roostaazad, R ; Farhadpour, F ; Pishvaei, M. R ; Sharif University of Technology
    2008
    Abstract
    A three-dimensional multi-component transport model in a two-phase oil-water system was developed. The model includes separated terms to account for the dispersion, convection, injection, growth and death of microbes, and accumulation. For the first time, effects of both wettability alteration of reservoir rock from oil wet to water wet and reduction in interfacial tension (IFT) simultaneously on relative permeability and capillary pressure curves were included in a MEOR simulation model. Transport equations were considered for the bacteria, nutrients, and metabolite (bio-surfactant) in the matrix, reduced interfacial tension on phase trapping, surfactant and polymer adsorption, and effect... 

    Hydrodynamics analysis of Density currents

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 21, Issue 3 , 2008 , Pages 211-226 ; 1728-144X (ISSN) Afshin, H ; Firoozabadi, B ; Rad, M ; Sharif University of Technology
    Materials and Energy Research Center  2008
    Abstract
    Density Current is formed when a fluid with heavier density than the surrounding fluid flows down an inclined bed. These types of flows are common in nature and can be produced by; salinity, temperature inhomogeneities, or suspended particles of silt and clay. Driven by the density difference between inflow and clear water in reservoirs, density current plunges clear water and moves towards a dam, while density current flows on a sloping bed. The vertical spreading due to water entrainment has an important role in determining the propagation rate in the longitudinal direction. In this work, two-dimensional steady-state salt solutions' density currents were investigated by means of... 

    Contribution of water-in-oil emulsion formation and pressure fluctuations to low salinity waterflooding of asphaltic oils: A pore-scale perspective

    , Article Journal of Petroleum Science and Engineering ; Volume 203 , 2021 ; 09204105 (ISSN) Salehpour, M ; Sakhaei, Z ; Salehinezhad, R ; Mahani, H ; Riazi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    During the low salinity waterflooding (LSWF) of a viscous asphaltic oil reservoir, fluid-fluid interactions have a large influence on the fluid flow, pore-scale events, and thus oil recovery efficiency and behavior. In-situ water-in-oil (W/O) emulsion formation is a consequence of crude oil and brine interfacial activities. Despite the published studies, the pore-scale mechanisms of W/O emulsion formation and the role of injected brine salinity, injection rate, and pore-scale heterogeneity on emulsion formation and stability requires a deeper understanding. To address these, a series of static and dynamic micro-scale experiments were performed. The salinity dependent oil-brine interactions... 

    Asphaltene destabilization in the presence of an aqueous phase: The effects of salinity, ion type, and contact time

    , Article Journal of Petroleum Science and Engineering ; Volume 208 , 2022 ; 09204105 (ISSN) Mokhtari, R ; Hosseini, A ; Fatemi, M ; Andersen, S. I ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    One of the possible fluid-fluid interactions during water-flooding in oil reservoirs, that is still debated, is the effect of injected brine salinity on asphaltene destabilization. If asphaltene precipitation is induced by salinity changes in the oil reservoirs and surface facilities, this could have a massive impact on the economy of a low salinity water-flooding project. Therefore, this study aims to investigate the effect of brine salinity on the amount of asphaltene precipitation and the governing destabilization mechanisms. Direct asphaltene precipitation measurements, along with the analyses of optical microscopy images and ion chromatography (IC), indicate that the asphaltene... 

    Characterizing the Role of Shale Geometry and Connate Water Saturation on Performance of Polymer Flooding in Heavy Oil Reservoirs: Experimental Observations and Numerical Simulations

    , Article Transport in Porous Media ; Volume 91, Issue 3 , 2012 , Pages 973-998 ; 01693913 (ISSN) Mohammadi, S ; Masihi, M ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    Many heavy oil reservoirs contain discontinuous shales which act as barriers or baffles to flow. However, there is a lack of fundamental understanding about how the shale geometrical characteristics affect the reservoir performance, especially during polymer flooding of heavy oils. In this study, a series of polymer injection processes have been performed on five-spot glass micromodels with different shale geometrical characteristics that are initially saturated with the heavy oil. The available geological characteristics from one of the Iranian oilfields were considered for the construction of the flow patterns by using a controlled-laser technology. Oil recoveries as a function of pore... 

    Mechanistic study of wettability alteration of oil-wet calcite: The effect of magnesium ions in the presence and absence of cationic surfactant

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 482 , October , 2015 , Pages 403-415 ; 09277757 (ISSN) Karimi, M ; Al Maamari, R. S ; Ayatollahi, S ; Mehranbod, N ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Over 60% of the world's discovered oil reserves are held in carbonate reservoirs, which are mostly naturally fractured. Conventional water flooding results in low oil recovery efficiency in these reservoirs as most of them are oil-wet. On account of negative capillary forces, injected brine cannot penetrate simply into an oil-wet matrix of fractured formations to force the oil out. Wettability alteration of the rock surface to preferentially more water-wet state has been extensively studied using both smart water and surfactants separately. This study aims to study the effects of Mg2+ as one of the most important wettability influencing ions on the wetting properties of oil-wet carbonate... 

    Stability analysis of arch dam abutments due to seismic loading

    , Article Scientia Iranica ; Volume 24, Issue 2 , 2017 , Pages 467-475 ; 10263098 (ISSN) Mostafaei, H ; Sohrabi Gilani, M ; Ghaemian, M ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    Abutments of concrete arch dams are usually crossed by several joints, which may create some rock wedges. Abutment stability analysis and controlling the probable wedge movements is one of the main concerns in the design procedure of arch dams that should be investigated. For decades, the quasi-static method, due to its simple approach, has been used by most of dam designers. In this study, the dynamic method is presented and the obtained time history of sliding safety factors is compared with the quasi-static results. For this purpose, all three components of Kobe (1979) and Imperial Valley (1940) earthquakes are applied to the wedge, simultaneously, and the magnitude and direction of wedge...