Loading...
Search for: reservoirs--water
0.007 seconds
Total 115 records

    Prediction of Surfactant Retention in Porous Media: A Robust Modeling Approach

    , Article Journal of Dispersion Science and Technology ; Vol. 35, issue. 10 , Sep , 2014 , p. 1407-1418 Yassin, M. R ; Arabloo, M ; Shokrollahi, A ; Mohammadi, A. H ; Sharif University of Technology
    Abstract
    Demands for hydrocarbon production have been increasing in recent decades. As a tertiary production processes, chemical flooding is one of the effective technologies to increase oil recovery of hydrocarbon reservoirs. Retention of surfactants is one of the key parameters affecting the performance and economy of a chemical flooding process. The main parameters contribute to surfactant retention are mineralogy of rock, surfactant structure, pH, salinity, acidity of the oil, microemulsion viscosity, co-solvent concentration, and mobility. Despite various theoretical studies carried out so far, a comprehensive and reliable predictive model for surfactant retention is still found lacking. In this... 

    Intelligent model for prediction of CO2 - Reservoir oil minimum miscibility pressure

    , Article Fuel ; Volume 112 , 2013 , Pages 375-384 ; 00162361 (ISSN) Shokrollahi, A ; Arabloo, M ; Gharagheizi, F ; Mohammadi, A. H ; Sharif University of Technology
    2013
    Abstract
    Multiple contact miscible floods such as injection of relatively inexpensive gases into oil reservoirs are considered as well-established enhanced oil recovery (EOR) techniques for conventional reservoirs. A fundamental factor in the design of gas injection project is the minimum miscibility pressure (MMP), whereas local sweep efficiency from gas injection is very much dependent on the MMP. Slim tube displacements, and rising bubble apparatus (RBA) are two main tests that are used for experimentally determination of MMP but these tests are both costly and time consuming. Hence, searching for quick and accurate mathematical determination of gas-oil MMP is inevitable. The objective of this... 

    Optimal well location in surfactant flooding by genetic algorithm

    , Article 74th European Association of Geoscientists and Engineers Conference and Exhibition 2012 Incorporating SPE EUROPEC 2012: Responsibly Securing Natural Resources ; 2012 , Pages 5489-5491 ; 9781629937908 (ISBN) Ravandoust, R ; Chahardahcherik, M ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE  2012
    Abstract
    As many fields around the world are reaching maturity, the need to develop new tools that allows reservoir engineering to optimize reservoir performance is becoming more demanding. One of the more challenging and influential problems along these lines is the well placement optimization problem. Determining of the location of new wells is a complex problem that depends on reservoir and fluid properties, well and surface equipment specifications, and economic criteria. Various approaches have been proposed for this problem. Among those, direct optimization using the simulator as the evaluation function, although accurate, is in most cases infeasible due to the number of simulations required.... 

    Worm-like micelles:a new approach for heavy oil recovery from fractured systems

    , Article Canadian Journal of Chemical Engineering ; Volume 93, Issue 5 , 2015 , Pages 951-958 ; 00084034 (ISSN) Kianinejad, A ; Saidian, M ; Mavaddat, M ; Ghazanfari, M. H ; Kharrat, R ; Rashtchian, D ; Sharif University of Technology
    Wiley-Liss Inc  2015
    Abstract
    In this work, a new type of flooding system, "worm-like micelles", in enhanced heavy oil recovery (EOR) has been introduced. Application of these types of surfactants, because of their intriguing and surprising behaviour, is attractive for EOR studies. Fundamental understanding of the sweep efficiencies as well as displacement mechanisms of this flooding system in heterogeneous systems especially for heavy oils remains a topic of debate in the literature. Worm-like micellar surfactant solutions are made up of highly flexible cylindrical aggregates. Such micellar solutions display high surface activity and high viscoelasticity, making them attractive in practical applications for EOR. In this... 

    Assessment of underground karst caves using geophysical tests: A case study for lajamgir dam site, iran

    , Article Proceedings of the 5th International Conference on Geotechnical and Geophysical Site Characterisation, ISC 2016, 5 September 2016 through 9 September 2016 ; Volume 2 , 2016 , Pages 879-882 ; 9780994626127 (ISBN) Jafarzadeh, F ; Shahrabi, M. M ; Banikheir, M ; Eskandari, N ; Akbari Garakani, A ; Sedaghat Jahromi, H. F ; Sharif University of Technology
    Australian Geomechanics Society  2016
    Abstract
    Karst features have caused serious problems in many engineering projects because of their permeability and high leakage potential; a clear example is Lar Dam, 84 km northeast of Tehran in which normal water level has never been reached since the filling of its reservoir in 1980. Sometimes conventional methods of studying karst features (e.g., borings and sampling) fail to precisely reveal their underground structure and this may result in inaccurate design, extensive leakage and creation of sinkholes. In the present paper, an under-study dam site in Lajamgir, Zanjan province, northern Iran is investigated. Ground observations indicated the possibility of presence of Karst caves while borings... 

    Seismic performance evaluation of a jointed arch dam

    , Article Structure and Infrastructure Engineering ; Volume 12, Issue 2 , 2016 , Pages 256-274 ; 15732479 (ISSN) Alembagheri, M ; Ghaemian, M ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    Seismic performance and safety of a jointed arch dam, as an arch-shaped mass concrete structure, are investigated through the nonlinear incremental dynamic analysis. In this way, 12 proper ground motions are selected, each of them is scaled to 12 successively increasing intensity levels and applied to the dam. Three and seven contraction joints are inserted within the dam body, and stage construction is taken into account. Several main assumptions including dam–reservoir–foundation dynamic interaction, absorbing boundary conditions at the far-ends of the reservoir and foundation, and material and joint nonlinearities are considered. The failure modes of the dam are determined according to... 

    A priori error estimation of upscaled coarse grids for water-flooding process

    , Article Canadian Journal of Chemical Engineering ; Volume 94, Issue 8 , 2016 , Pages 1612-1626 ; 00084034 (ISSN) Khoozan, D ; Firoozabadi, B ; Sharif University of Technology
    Wiley-Liss Inc 
    Abstract
    Advanced reservoir characterization methods can yield geological models at a very fine resolution, containing 1011–1018 cells, while the common reservoir simulators can only handle much lower numbers of cells due to computer hardware limitations. The process of coarsening a fine-scale model to a simulation model is known as upscaling. Predicting the accuracy of simulation results over an upscaled grid with respect to the fine grid is highly important, as it can yield the optimum upscaling process. In this paper, permeability-based and velocity-based a priori error estimation techniques are proposed by introducing image processing-based comparison methods in the context of upscaling. The... 

    Simulation of wave generated by landslides in Maku dam reservoir

    , Article Prediction and Simulation Methods for Geohazard Mitigation - Proceedings of the International Symposium on Prediction and Simulation Methods for Geohazard Mitigation, IS-KYOTO 2009, 25 May 2009 through 27 May 2009 ; 2009 , Pages 91-96 ; 9780415804820 (ISBN) Yavari Ramshe, S ; Ataie Ashtiani, B ; Sharif University of Technology
    Abstract
    In this work, impulsive wave generation and propagation generated by landslides are studied numerically for a real case. Maku dam reservoir, in the northwestern of Iran is considered as the case study. Generated wave heights, wave run-up, maximum wave height above the dam crest and the probable overtopping volume have been evaluated, using a two-dimensional numerical model (LS3D). This model is validated using available three-dimensional experimental data for simulating impulsive wave caused by sub-aerial landslides. Based on the results, the generated wave height for first and second scenarios are 12 m and 18 m respectively. The wave height of 8 m is observed close to dam body. Because of... 

    The impact of connate water saturation and salinity on oil recovery and CO2 storage capacity during carbonated water injection in carbonate rock

    , Article Chinese Journal of Chemical Engineering ; 2018 ; 10049541 (ISSN) Shakiba, M ; Riazi, M ; Ayatollahi, S ; Takband, M ; Sharif University of Technology
    Chemical Industry Press  2018
    Abstract
    Carbonated water injection (CWI) is known as an efficient technique for both CO2 storage and enhanced oil recovery (EOR). During CWI process, CO2 moves from the water phase into the oil phase and results in oil swelling. This mechanism is considered as a reason for EOR. Viscous fingering leading to early breakthrough and leaving a large proportion of reservoir un-swept is known as an unfavorable phenomenon during flooding trials. Generally, instability at the interface due to disturbances in porous medium promotes viscous fingering phenomenon. Connate water makes viscous fingers longer and more irregular consisting of large number of tributaries leading to the ultimate oil recovery... 

    On the effects of landslide deformability and initial submergence on landslide-generated waves

    , Article Landslides ; 2018 ; 1612510X (ISSN) Yavari Ramshe, S ; Ataie Ashtiani, B ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    This paper represents a numerical study on the effects of landslide initial submergence and its geotechnical and rheological properties on the characteristics of landslide-generated waves (LGWs) and landslide deformation. A number of 117 numerical experiments are performed using a two-layer Coulomb Mixture Flow (2LCMFlow) model on a real-sized numerical flume as a simplified cross section of the Maku dam reservoir, located in the Northwest of Iran. Three different initial locations are considered for landslide representing a subaerial (SAL), a semi-submerged (SSL), and a submarine (SML) landslide. Based on the numerical results, the majority of SMLs and in some cases SSLs generate tsunami... 

    Effects of density currents on sedimentation in reservoirs

    , Article Scientia Iranica ; Volume 14, Issue 5 , 2007 , Pages 395-404 ; 10263098 (ISSN) Mohammadnezhad, B. A ; Shamsai, A ; Sharif University of Technology
    Sharif University of Technology  2007
    Abstract
    The development of density or turbidity currents causes serious problems for environmental hydraulics in reservoirs. The stream entered to a reservoir can carry sediments, nutrients and chemicals as density or turbidity currents. The fate of sediment and other substances transported by the current depends on the characteristics of the turbidity current itself, i.e. the velocity of fluid, the amount of mixing with reservoir water and the rates of sediment deposition and resuspension. These are important factors for water quality in reservoirs. A two-dimensional, depth-averaged, finite-volume numerical model is developed to study density currents, driven by non-cohesive sediments. The model... 

    New seepage-related design graphs for rock-fill dams

    , Article International Symposium on Dams in the Societies of the 21st Century, ICOLD-SPANCOLD - Dams and Reservoirs, Societies and Environment in the 21st Century, Barcelona, 18 June 2006 through 18 June 2006 ; Volume 1 , 2006 , Pages 971-978 ; 0415404231 (ISBN); 9780415404235 (ISBN) Soleimanbeigi, A ; Jafarzadeh, F ; Sharif University of Technology
    Taylor and Francis/ Balkema  2006
    Abstract
    Seepage analysis serves as one of the most significant stages in the design process of an embankment dam. In two-dimensional (2D) seepage analysis of embankment dams, little or no attention is paid to the widthwise flows from side abutments. Moreover, the role of grout curtain extensions into the side abutments and abutment material properties are inevitably neglected when performing seepage analyses in 2D plane. In this paper, two and three-dimensional (3D) models of a rock-fill dam are generated and several unsteady and steady state seepage analyses are performed using finite element method (FEM). The results obtained from 2D and 3D seepage analyses were compared with measurements from the... 

    Polymer-Enhanced low-salinity brine to control in situ mixing and salt dispersion in low-salinity waterflooding

    , Article Energy and Fuels ; Volume 35, Issue 13 , 2021 , Pages 10540-10550 ; 08870624 (ISSN) Darvish Sarvestani, A ; Rostami, B ; Mahani, H ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Although viability of low-salinity waterflooding (LSWF) at the laboratory scale has been proven, there are some challenges associated with its field application, which sheds uncertainties on its economic success. One of the challenges is the minimum required volume of low-salinity water, which should be injected to the reservoir due to the salt dispersion in porous media. Once the low-saline brine is injected into the reservoir, mixing of injected (low-salinity) and resident (high-salinity) brines occurs and the developed mixing zone grows continuously as the front moves from the injection well toward the production well. Increase in the salinity of the front reduces the efficiency of LSWF.... 

    A vacuum-refilled tensiometer for deep monitoring of in-situ pore water pressure

    , Article Scientia Iranica ; Volume 27, Issue 2A , 2021 , Pages 596-606 ; 10263098 (ISSN) Sadeghi, H ; Chiu, A. C. F ; Ng, C. W. W ; Jafarzadeh, F ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    Real-time measurement of soil water pressure has been recognized as an essential part of investigating water ow in unsaturated soils. Tensiometry, amongst different measuring techniques, is a common method for direct evaluation of water pressure. However, the lower limit of measurable water pressure by a conventional tensiometer becomes even more limited by increasing its length in the vertical installation. This paper describes the development of a Vacuum-Refilled Tensiometer (VRT) for monitoring soil water pressure independent of installation depth. This is achieved by fixing the distance between pressure sensor and ceramic cup together with incorporating an ancillary vacuumre filling... 

    Well Injectivity during CO2Geosequestration: A Review of Hydro-Physical, Chemical, and Geomechanical Effects

    , Article Energy and Fuels ; Volume 35, Issue 11 , 2021 , Pages 9240-9267 ; 08870624 (ISSN) Hajiabadi, S.H ; Bedrikovetsky, P ; Borazjani, S ; Mahani, H ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Deep saline aquifers are among the most favorable geological sites for short- and long-term carbon geosequestration. Injection of CO2 into aquifers causes various hydro-physical, chemical, and geomechanical interactions that affect the injectivity of wellbores. Despite the extensive research conducted on carbon capture and storage (CCS), there exists a lack of focus on the concept of injectivity. The present study aims to identify the gaps by reviewing the major factors contributing to CO2 injectivity in deep saline aquifers. Moreover, the existing analytical and numerical mathematical models to estimate maximum sustainable injection pressure and pressure build-up are critically reviewed.... 

    Behavior of mass concrete using smeared crack approach in three dimensional problems

    , Article 11th International Conference on Fracture 2005, ICF11, Turin, 20 March 2005 through 25 March 2005 ; Volume 3 , 2005 , Pages 1999-2004 ; 9781617820632 (ISBN) Mirzabozorg, H ; Ghaemian, M ; International Congress on Fracture (ICF); European Structural IntegritySociety (ESIS); American Society for Testing and Materials (ASTM) ; Sharif University of Technology
    2005
    Abstract
    A smeared crack approach has been proposed to model the static and dynamic behavior of mass concrete in three-dimensional space. The proposed model simulates the tensile fracture on the mass concrete and contains pre-softening behavior, softening initiation, fracture energy conservation and strain rate effects under dynamic loads. It was found that the proposed model gives excellent results and crack profiles comparing with the available data under static loads. Morrow Point dam was analyzed including dam-reservoir interaction effects to consider its nonlinear seismic behavior. It was found that the resulted crack profiles are in good agreement with the contour of maximum principal stresses... 

    Seismic analysis of a system of dam-massed foundation-reservoir under inclined excitation

    , Article JVC/Journal of Vibration and Control ; Volume 28, Issue 13-14 , 2022 , Pages 1769-1780 ; 10775463 (ISSN) Sotoudeh, P ; Ghaemian, M ; Sharif University of Technology
    SAGE Publications Inc  2022
    Abstract
    One of the acceptable assumptions in engineering practice is vertical propagation of earthquake waves. When the source of earthquake is located very deep in the ground, this assumption is valid, but for sources located in shallow ground, it loses its viability. In this study, linear seismic analysis of a system of concrete dam-massed foundation-reservoir is performed under inclined earthquake excitation. Both P- and SV-type earthquakes are considered for the purpose of the seismic analysis. To consider the effects of inhomogeneous waves for the case of SV wave propagation, post-critical angles are also considered in the analysis. To investigate the effects of earthquake frequency content on... 

    Development of a dynamic long-term water allocation model for agriculture and industry water demands

    , Article Water Resources Management ; Volume 24, Issue 9 , 2010 , Pages 1717-1746 ; 09204741 (ISSN) Karimi, A ; Ardakanian, R ; Sharif University of Technology
    2010
    Abstract
    Demands growth and water resources limitation, enforce water sector policy makers to integrate water supply-demand interactions in a coherent framework for efficient water allocation. Water supply-demand interaction, changes long-term trend of water demands, which in turn has a substantial influence on water allocation. Researches on water allocation modeling lack adequate projection of relationship between water supply and demand. Socio-economic factors representing water allocation stakeholders' benefits, account for the main share of water supply-demand interaction. Identification, representation and consideration of these factors in a water allocation model, is the main limitation of... 

    Spring hydrograph simulation of karstic aquifers: impacts of variable recharge area, intermediate storage and memory effects

    , Article Journal of Hydrology ; Volume 552 , 2017 , Pages 225-240 ; 00221694 (ISSN) Hosseini, S. M ; Ataie Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    Abstract
    A simple conceptual rainfall–runoff model is proposed for the estimation of groundwater balance components in complex karst aquifers. In the proposed model the effects of memory length of different karst flow systems of base-flow, intermediate-flow, and quick-flow and also time variation of recharge area (RA) during a hydrological year were investigated. The model consists of three sub-models: soil moisture balance (SMB), epikarst balance (EPB), and groundwater balance (GWB) to simulate the daily spring discharge. The SMB and EPB sub-models utilize the mass conservation equation to compute the variation of moisture storages in the soil cover and epikarst, respectively. The GWB sub-model... 

    Three-dimensional nonlinear seismic analysis of concrete faced rockfill dams subjected to scattered P, SV, and SH waves considering the dam-foundation interaction effects

    , Article Soil Dynamics and Earthquake Engineering ; Volume 31, Issue 5-6 , 2011 , Pages 792-804 ; 02677261 (ISSN) Seiphoori, A ; Mohsen Haeri, S ; Karimi, M ; Sharif University of Technology
    2011
    Abstract
    In this study, the nonlinear seismic analysis of a typical three-dimensional concrete faced rockfill dam is reported. Three components of the Loma Prieta (Gilroy 1 station) earthquake acceleration time history are used as input excitation. The dam under study is considered as if it were located in a prismatic canyon with a trapezoidal cross-section. A nonlinear model for the rockfill material is used, and contact elements with Coulomb friction law are utilized at the slab-rockfill interface. Vertical joints in the face slab are also considered in the finite element model. A substructure method, in which the unbounded soil is modelled by the scaled boundary finite element method (SBFEM), is...