Loading...
Search for: numerical-investigations
0.012 seconds
Total 130 records

    The effect of non-uniform magnetic field on the efficiency of mixing in droplet-based microfluidics: a numerical investigation

    , Article Micromachines ; Volume 13, Issue 10 , 2022 ; 2072666X (ISSN) Rezaeian, M ; Nouri, M ; Hassani Gangaraj, M ; Shamloo, A ; Nasiri, R ; Sharif University of Technology
    MDPI  2022
    Abstract
    Achieving high efficiency and throughput in droplet-based mixing over a small characteristic length, such as microfluidic channels, is one of the crucial parameters in Lab-on-a-Chip (LOC) applications. One solution to achieve efficient mixing is to use active mixers in which an external power source is utilized to mix two fluids. One of these active methods is magnetic micromixers using ferrofluid. In this technique, magnetic nanoparticles are used to make one phase responsive to magnetic force, and then by applying a magnetic field, two fluid phases, one of which is magneto-responsive, will sufficiently mix. In this study, we investigated the effect of the magnetic field’s characteristics... 

    Integrating hydrodynamic and acoustic cell separation in a hybrid microfluidic device: a numerical analysis

    , Article Acta Mechanica ; Volume 233, Issue 5 , 2022 , Pages 1881-1894 ; 00015970 (ISSN) Ashkezari, A. H. K ; Dizani, M ; Shamloo, A ; Sharif University of Technology
    Springer  2022
    Abstract
    Cell separation microfluidic devices have evolved into a multitude of biomedical and clinical research. Nonetheless, many critical issues remain in the way of achieving an excellent separation of target cells from a heterogeneous sample. Parallel to the abundant experimental studies related to the hybrid microfluidic methods, it is easy to perceive the lack of numerical investigations in order to optimize the separation process and its accuracy. In this study, for the first time to the best of our knowledge, a hybrid system by integrating acoustophoresis and pinched-flow fractionation (PFF) is proposed to achieve a viable system for a wide-range, precise separation. Employing the ultrasound... 

    Numerical investigation on the solid flow pattern in bubbling gas-solid fluidized beds: Effects of particle size and time averaging

    , Article Powder Technology ; Vol. 264, issue , September , 2014 , p. 466-476 Askarishahi, M ; Salehi, M. S ; Molaei Dehkordi, A ; Sharif University of Technology
    Abstract
    The effects of particle size on the solid flow pattern in gas-solid bubbling fluidized beds were investigated numerically using two-fluid model based on the kinetic theory of granular flow. In this regard, the set of governing equations was solved using finite volume method in two-dimensional Cartesian coordinate system. Glass bead particles with mean sizes of 880. μm, 500. μm, and 351. μm were fluidized by air flow at excess gas velocities of 0.2. m/s and 0.4. m/s. For particle diameters of 880 and 351. μm, the predicted characteristic times for solid dispersion were 0.14. s and 0.15. s, respectively, while characteristic times for solid diffusivity were 1.68. ms and 0.75. ms in the same... 

    Numerical investigation of the effect of sprue base design on the flow pattern of aluminum gravity casting

    , Article Defect and Diffusion Forum ; Volume 344 , October , 2013 , Pages 43-53 ; 10120386 (ISSN) ; 9783037859049 (ISBN) Baghani, A ; Bahmani, A ; Davami, P ; Varahram, N ; Shabani, M. O ; Fisher D. J ; Sharif University of Technology
    2013
    Abstract
    Effects of sprue base size and design on flow pattern during aluminum gravity casting have been investigated by employing different sprue base sizes and using computational fluid dynamics (CFD). Calculations was carried out using SUTCAST simulation software based on solving Navier-Stokes equation and tracing the free surface using SOLA-VOF algorithm. Flow pattern was analyzed with focusing on streamlines and velocity distribution in sprue base, runner and in-gate. Increasing well size was produced a vortex flow at the bottom of sprue base which increased the surface velocity of liquid metal in runner. Using a rather big sprue well could eliminate vena contracta, but in-gate velocity was... 

    Numerical investigation of cone angle effect on the flow field and separation efficiency of deoiling hydrocyclones

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 49, Issue 2 , February , 2013 , Pages 247-260 ; 09477411 (ISSN) Saidi, M ; Maddahian, R ; Farhanieh, B ; Sharif University of Technology
    2013
    Abstract
    In this study, the effect of cone angle on the flow field and separation efficiency of deoiling hydrocyclones is investigated taking advantage of large eddy simulation. The dynamic Smagorinsky is employed to determine the residual stress tensor of the continuous phase. The method of Lagrangian particle tracking with an optimized search algorithm (closest cell) is applied to evaluate the separation efficiency of deoiling hydrocyclone. Simulations are performed on a 35-mm deoiling hydrocyclone with the three different cone angles of 6, 10 and 20 degree. The numerical results revealed that the changes in the cone angle would affect the velocity and pressure distribution inside hydrocyclone, and... 

    Experimental and numerical investigation of radial flow compressor volute shape effects in characteristics and circumferential pressure non-uniformity

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1753-1764 ; 10263098 (ISSN) Mojaddam, M ; Hajilouy Benisi, A ; Movahhedy, M. R ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    In this article, the effects of volute cross section shape and centroid profile of a radial ow compressor volute were investigated. The performance characteristics of a turbocharger compressor were obtained experimentally by measuring rotor speed and ow parameters at the inlet and outlet of the compressor. The three-dimensional ow field model of the compressor was obtained numerically solving Navier-Stokes equations with SST turbulence model. The compressor characteristic curves were plotted. For model verification, the results were compared with experimental data, showing good agreement. Modification of a volute was performed by introducing a shape factor for volute cross section geometry.... 

    Multi-facility location problems in the presence of a probabilistic line barrier: A mixed integer quadratic programming model

    , Article International Journal of Production Research ; Volume 50, Issue 15 , Jul , 2012 , Pages 3988-4008 ; 00207543 (ISSN) Shiripour, S ; Mahdavi, I ; Amiri Aref, M ; Mohammadnia Otaghsara, M ; Mahdavi Amiri, N ; Sharif University of Technology
    T&F  2012
    Abstract
    We consider a multi-facility location problem in the presence of a line barrier with the starting point of the barrier uniformly distributed. The objective is to locate n new facilities among m existing facilities minimising the summation of the weighted expected rectilinear barrier distances of the locations of new facilities and new and existing facilities. The proposed problem is designed as a mixed-integer nonlinear programming model, conveniently transformed into a mixed-integer quadratic programming model. The computational results show that the LINGO 9.0 software package is effective in solving problems with small sizes. For large problems, we propose two meta-heuristic algorithms,... 

    Experimental and numerical investigation of pulse-shaped split Hopkinson pressure bar test

    , Article Materials Science and Engineering A ; Volume 539 , 2012 , Pages 285-293 ; 09215093 (ISSN) Naghdabadi, R ; Ashrafi, M. J ; Arghavani, J ; Sharif University of Technology
    Abstract
    Employing a proper pulse shaper in the conventional split Hopkinson pressure bar (SHPB) test helps to achieve dynamic equilibrium condition and to fulfill a constant strain rate condition in the test specimen. To this end, the parameters affecting the incident pulse shape, i.e., pulse shaper thickness, pulse shaper diameter, striker bar length and striker bar velocity are experimentally studied. Moreover, simulation results, validated by experimental data together with wave propagation analysis, are exploited to provide general guidelines to properly design a pulse shaper. It is recommended to use a relatively large diameter pulse shaper for testing work-hardening materials. Also, for... 

    Experimental and numerical investigation of drag force over tubular frustum

    , Article Scientia Iranica ; Volume 18, Issue 5 , 2011 , Pages 1133-1137 ; 10263098 (ISSN) Niknafs Abrebekooh, Y ; Rad, M ; Sharif University of Technology
    Abstract
    There are different ways in order to achieve higher velocity in underwater vehicles. One of these methods is using a body with special form. This paper presents a towing tank based experimental study on drag forces for different Reynolds Numbers of a special underwater model. This paper investigates drag force and drag coefficient in a different flow direction over the model. Obtained experimental results in towing tank are explained. Computational Fluid Dynamic (CFD) simulation also is performed using commercial CFD software package FLUENT 6.3.26. There is a significant decrease in drag coefficient of model moving with small diameter at upstream  

    Numerical investigation of the swirling air diffuser: Parametric study and optimization

    , Article Energy and Buildings ; Volume 43, Issue 6 , June , 2011 , Pages 1329-1333 ; 03787788 (ISSN) Sajadi, B ; Saidi, M. H ; Mohebbian, A ; Sharif University of Technology
    2011
    Abstract
    During the recent decade, high induction diffusers have become more appealing in applications which require relatively high ventilation airflow rates, such as clean rooms. In this research, the effect of geometric parameters on the performance of a specific type of swirling air diffuser is investigated numerically. The results show that although the diffuser slots geometry, namely their angle and aspect ratio, is impressive on the diffuser performance, it is not as important as the swirling blade angle and the performance is almost constant in a wide range of slots specifications. The results also demonstrate that the diffuser performance and the resultant indoor airflow distribution highly... 

    Numerical investigation of thermo-fluid dynamics of two triangular jets

    , Article Mechanika ; Volume 17, Issue 2 , 2011 , Pages 149-155 ; 13921207 (ISSN) Chitsaz, I ; Farhanieh, B ; Sharif University of Technology
    2011
    Abstract
    This paper addresses the numerical simulation of thermo-fluid characteristics of triangular jets. The results of spatially developing, three dimensional jets from isosce-les and equilateral nozzles at different Reynolds numbers and distances between jets are presented. The system of governing equations, subject to the proper boundary condi-tions is solved with the finite volume method with collo-cated grid arrangement. SIMPLEC algorithm was used for the pressure-velocity coupling to discrete the governing equations of flow and energy. The turbulent stresses are approximated using k-ε model. The velocity and tempera-ture fields are presented and rates of their decay at jet cen-terline are... 

    Numerical investigation on the behavior of the gravity waterfront structures under earthquake loading

    , Article Ocean Engineering ; Volume 106 , September , 2015 , Pages 152-160 ; 00298018 (ISSN) Khosrojerdi, M ; Pak, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Abstract Lateral Spreading, which usually occurs as a consequence of liquefaction in gently sloped loose saturated sand layers, is known to be a major source of earthquake-induced damages to structures such as quay walls, bridge piers, pipelines, and highway/railways. Therefore evaluation of the liquefaction potential and using appropriate methods for prediction of the adverse consequences of lateral spreading is of great importance. In this study, numerical modeling has been used to study lateral spreading phenomenon behind rigid waterfront structures. Coupled dynamic field equations of the extended Biot's theory with u-P formulation are used for simulating the phenomenon. A fully coupled... 

    Numerical investigation of the effects of porosity and tortuosity on soil permeability using coupled three-dimensional discrete-element method and lattice Boltzmann method

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 91, Issue 5 , May , 2015 ; 15393755 (ISSN) Sheikh, B ; Pak, A ; Sharif University of Technology
    American Physical Society  2015
    Abstract
    Permeability of porous materials is an important characteristic which is extensively used in various engineering disciplines. There are a number of issues that influence the permeability coefficient among which the porosity, size of particles, pore shape, tortuosity, and particle size distribution are of great importance. In this paper a C++ GPU code based on three-dimensional lattice Boltzmann method (LBM) has been developed and used for investigating the effects of the above mentioned factors on the permeability coefficient of granular materials. Multirelaxation time collision scheme of the LBM equations is used in the simulator, which is capable of modeling the exact position of the... 

    Numerical investigation of the forward and backward travelling waves through an undulating propulsor: performance and wake pattern

    , Article Ships and Offshore Structures ; Apr , 2015 ; 17445302 (ISSN) Ebrahimi, M ; Abbaspour, M ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    Recently, the mechanisms of natural undulatory locomotion of aquatic animal swimming have become one of the most significant issues for the researchers, swimmers and engineers. This study aims to elucidate and compare the propulsive vortical signature and performance of backward (negative undulation) and forward (positive undulation) travelling waves through a typical fishlike propulsor by a systematic numerical study. The numerical approach uses a pressure-based finite volume method solver to solve Navier–Stokes equations in an arbitrary Lagrangian–Eulerian framework domain containing a two-dimensional NACA 0012 foil moving with prescribed kinematics. Some of the important findings are: (1)... 

    Experimental and numerical investigation of a centrifugal compressor

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010, Istanbul ; Volume 3 , 2010 , Pages 447-458 ; 9780791849170 (ISBN) Karrabi, H ; Hajilouy Benisi, A ; Nili Ahmadabadi, M ; Sharif University of Technology
    2010
    Abstract
    In this research, centrifugal compressor of a gas turbine is investigated experimentally and numerically. Operation line of the compressor as a component of the gas turbine is obtained experimentally by measurements of impeller rotational speed, and flow parameters at the compressor inlet and outlet during the gas turbine operation. The flow field inside the impeller and diffusers are analyzed numerically using a full 3D Navier-Stokes program with SST turbulence model. Boundary conditions for the numerical simulation are specified from the experimental measurements. The operation line of the compressor is obtained numerically, which is compared with that of the experimental results, and... 

    Correlation for Nusselt number in pure magnetic convection ferrofluid flow in a square cavity by a numerical investigation

    , Article Journal of Magnetism and Magnetic Materials ; Volume 322, Issue 22 , November , 2010 , Pages 3607-3613 ; 03048853 (ISSN) Ashouri, M ; Ebrahimi, B ; Shafii, M. B ; Saidi, M. H ; Saidi, M. S ; Sharif University of Technology
    2010
    Abstract
    Magnetic convection heat transfer in a two-dimensional square cavity induced by magnetic field gradient is investigated numerically using a semi-implicit finite volume method. The side walls of the cavity are heated with different temperatures, the top and bottom walls are isolated, and a permanent magnet is located near the bottom wall. Thermal buoyancy-induced flow is neglected due to the nongravity condition on the plane of the cavity. Conditions for the different values of non-dimensional variables in a variety of ferrofluid properties and magnetic field parameters are studied. Based on this numerical analysis, a general correlation for the overall Nusselt number on the side walls is... 

    Numerical investigation of turbulent free jet flows issuing from rectangular nozzles: The influence of small aspect ratio

    , Article Archive of Applied Mechanics ; Volume 80, Issue 7 , 2010 , Pages 727-745 ; 09391533 (ISSN) Faghani, E ; Maddahian, R ; Faghani, P ; Farhanieh, B ; Sharif University of Technology
    2010
    Abstract
    In this research, the fluid and thermal characteristics of a rectangular turbulent jet flow is studied numerically. The results of three-dimensional jet issued from a rectangular nozzle are presented. A numerical method employing control volume approach with collocated grid arrangement was employed. Velocity and pressure fields are coupled with SIMPLEC algorithm. The turbulent stresses are approximated using k-ε model with two different inlet conditions. The velocity and temperature fields are presented and the rates of their decay at the jet centerline are noted. The velocity vectors of the main flow and the secondary flow are illustrated. Also, effect of aspect ratio on mixing in... 

    Three dimensional numerical investigation of air flow over domed roofs

    , Article Journal of Wind Engineering and Industrial Aerodynamics ; Volume 98, Issue 3 , 2010 , Pages 161-168 ; 01676105 (ISSN) Faghih, A. K ; Bahadori, M. N ; Sharif University of Technology
    2010
    Abstract
    Domed roofs have been used in Iran and many other countries to cover large buildings such as mosques, shrines, churches, schools, etc. However their favorable thermal performance made them to be employed in other buildings such as bazaars, or market places, in Iran. The aim of this study was to determine the air pressure distribution over domed roofs, employing a numerical method. In this investigation, a three-dimensional model and a laminar inlet air flow were considered. The k-ε RNG method was employed for the turbulent flow simulation method. Simulation was run under three conditions of windows and a hole on top of the dome being open, or closed. The results were compared with the... 

    Numerical investigation of thermo fluid mechanics of differentially heated rotating tubes

    , Article Heat Transfer Engineering ; Volume 31, Issue 3 , 2010 , Pages 201-211 ; 01457632 (ISSN) Reza, M ; Farhanieh, B ; Sharif University of Technology
    2010
    Abstract
    Three-dimensional simulation of incompressible flow in rotating tubes for both laminar and turbulent flows has been performed using a finite-volume method for elliptic flows. The influence of Reynolds number on the velocity field and the effects of temperature gradient on temperature profiles have been presented by numerical simulations. Also the effects of velocity field, flow regime, and temperature distribution along the tube have been studied from different points of view. The results have been calculated for rotational Reynolds numbers ranging from 1000 to 320,000. The comparisons between numerically calculated velocity field and the Nusselt number have shown satisfactory agreement with... 

    Effect of system of initiators on the process cycle of nonisothermal resin transfer molding - Numerical investigation

    , Article Composites Part A: Applied Science and Manufacturing ; Volume 41, Issue 1 , 2010 , Pages 138-145 ; 1359835X (ISSN) Shojaei, A ; Farrahinia, H ; Pishvaie, S.M.R ; Sharif University of Technology
    2010
    Abstract
    The role of initiators with different reactivities on the process cycle of nonisothermal resin transfer molding (RTM) was examined using the numerical simulation. A new process model was developed based on flow, heat and mass transfer equations combined with an appropriate mechanistic kinetics model which elucidates the functions of the initiators in the system. The process cycle of RTM with both single initiator and dual-initiator (combination of two initiators) was analyzed. The numerical simulations revealed that the single initiator with high reactivity reduces the cycle time, but there is a risk of incomplete mold filling and nonuniform temperature distribution. For dual-initiator...