Loading...
Search for: nanosheets
0.007 seconds
Total 144 records

    Plasma surface functionalization of boron nitride nano-sheets

    , Article Diamond and Related Materials ; Volume 77 , 2017 , Pages 110-115 ; 09259635 (ISSN) Achour, H ; Achour, A ; Solaymani, S ; Islam, M ; Vizireanu, S ; Arman, A ; Ahmadpourian, A ; Dinescu, G ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    On silicon substrates, boron nitride nanosheets (BNNS) consisting of interconnected hexagonal boron nitride nano-layers were produced via chemical vapor deposition process at 1200 °C whose roughness's are at the micrometer- and nanometer-scale. The BNNS were functionalized in argon plasma admixed with ammonia or nitrogen or oxygen. The samples were characterized to investigate the surface chemistry and structural changes after plasma treatment using X-ray photoelectron spectroscope and Micro-Raman spectroscope techniques, respectively. While no significant changes in the surface features, upon plasma treatments of the BNNS, were noticed during SEM and TEM examination, the oxygen functional... 

    Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models

    , Article Journal of Materials Science: Materials in Medicine ; Volume 28, Issue 5 , 2017 , 73 ; 09574530 (ISSN) Mahmoudi, N ; Eslahi, N ; Mehdipour, A ; Mohammadi, M ; Akbari, M ; Samadikuchaksaraei, A ; Simchi, A ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    Abstract: In recent years, temporary skin grafts (TSG) based on natural biopolymers modified with carbon nanostructures have received considerable attention for wound healing. Developments are required to improve physico-mechanical properties of these materials to match to natural skins. Additionally, in-deep pre-clinical examinations are necessary to ensure biological performance and toxicity effect in vivo. In the present work, we show superior acute-wound healing effect of graphene oxide nanosheets embedded in ultrafine biopolymer fibers (60 nm) on adult male rats. Nano-fibrous chitosan-based skin grafts crosslinked by Genepin with physico-mechanical properties close to natural skins were... 

    Morphologically tailored CuO photocathode using aqueous solution technique for enhanced visible light driven water splitting

    , Article Journal of Photochemistry and Photobiology A: Chemistry ; Volume 337 , 2017 , Pages 54-61 ; 10106030 (ISSN) Kushwaha, A ; Moakhar, R. S ; Goh, G. K. L ; Dalapati, G. K ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Cupric oxide (CuO) nanostructures are grown on fluorine doped tin oxide (FTO) coated glass substrate using aqueous solution approach. The concentration of precursor's solution has significant impact on morphology of CuO nanostructure. By varying concentration of precursor, the growth of two different morphologies (oriented nanosheets and nanoleaves) is achieved. X-ray diffraction pattern and X-ray photoelectron spectroscopy reveals formation of pure CuO crystalline phase. Mott-Schottky characteristic confirms the p-type semiconducting nature. Ultrathin structures of nanoleaves lead to higher light trapping and light absorption in visible-NIR region. The nanoleaves film has lower bandgap in... 

    Heat transfer and entropy generation analysis of hybrid graphene/Fe3O4 ferro-nanofluid flow under the influence of a magnetic field

    , Article Powder Technology ; Volume 308 , 2017 , Pages 149-157 ; 00325910 (ISSN) Mehrali, M ; Sadeghinezhad, E ; Akhiani, A. R ; Tahan Latibari, S ; Metselaar, H. S. C ; Kherbeet, A. S ; Mehrali, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    The heat transfer characteristics and entropy generation rate of hybrid graphene-magnetite nanofluids under forced laminar flow that subjected to the permanent magnetic fields were investigated. For this purpose, a nanoscale reduced graphene oxide-Fe3O4 hybrid was synthesized by using graphene oxide, iron salts and tannic acid as the reductant and stabilizer. The thermophysical and magnetic properties of the hybrid nanofluid have been widely characterized and thermal conductivity has shown an enhancement of 11%. The experimental results indicated that the heat transfer enhancement of hybrid magnetite nanofluid compared to the case of distilled was negligible when no magnetic field was... 

    Kinetic study of navy blue photocatalytic degradation over Ag3PO4/BiPO4@MIL-88B(Fe)@g-C3N4 core@shell nanocomposite under visible light irradiation

    , Article New Journal of Chemistry ; Volume 41, Issue 18 , 2017 , Pages 10390-10396 ; 11440546 (ISSN) Gholizadeh Khasevani, S ; Mohaghegh, N ; Gholami, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    Herein, a novel quaternary Ag3PO4/BiPO4@MIL-88B(Fe)@g-C3N4 (AB@MIL-88B(Fe)@g-CN) nanocomposite with a core@shell structure is successfully fabricated in two simple steps. The prepared samples are characterized via various techniques. The photocatalytic activity of the prepared samples is evaluated by the degradation of navy Acid Blue 92 (AB92) dye as an organic pollutant under visible light irradiation. Highly enhanced photocatalytic efficiency is observed for the quaternary AB@MIL-88B(Fe)@g-CN nanocomposite compared to that for the other samples. The experimental results indicate that the photocatalytic activity enhancement is mainly attributed to the strong visible light absorption and... 

    Three-dimensional hybrid graphene/nickel electrodes on zinc oxide nanorod arrays as non-enzymatic glucose biosensors

    , Article Sensors and Actuators, B: Chemical ; Volume 251 , 2017 , Pages 462-471 ; 09254005 (ISSN) Mazaheri, M ; Aashuri, H ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    We present a novel hybrid electrode based on reduced graphene oxide/nickel/zinc oxide heterostructures. The sensor was fabricated by template-free hydrothermal growth of ZnO nanorod arrays on conductive glass substrates (FTO) followed by conformal electrodeposition of nickel nanoparticles with an average size of 18 nm. Then, in-situ reduction and electrophoretic deposition of graphene oxide (GO) nanosheets on the structured ZnO/Ni electrode was performed. The prepared three-dimensional nanostructure exhibited fast electrocatalytic response (<3 s) towards glucose oxidation due to the large surface area and high electro-activity. The prepared biosensor possessed a wide linear range over... 

    On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidone nanocomposite membranes: In vitro and in vivo effects of graphene oxide

    , Article Materials Science and Engineering C ; Volume 70 , 2017 , Pages 121-131 ; 09284931 (ISSN) Mahmoudi, N ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Nanofibrous structures that mimic the native extracellular matrix and promote cell adhesion have attracted considerable interest for biomedical applications. In this study, GO-modified nanofibrous biopolymers (GO) were prepared by electrospinning blended solutions of chitosan (80 vol%), polyvinyl pyrrolidone (15 vol%), polyethylene oxide (5 vol%) containing GO nanosheets (0–2 wt%). It is shown that GO nanosheets significantly change the conductivity and viscosity of highly concentrated chitosan solutions, so that ultrafine and uniform fibers with an average diameter of 60 nm are spinnable. The GO-reinforced nanofibers with controlled pore structure exhibit enhanced elastic modulus and... 

    On the design of graphene oxide nanosheets membranes for water desalination

    , Article Desalination ; Volume 422 , 2017 , Pages 83-90 ; 00119164 (ISSN) Safaei, S ; Tavakoli, R ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    According to current researches, graphene oxide (GO) membranes show promising desalination properties due to ease of synthesis, low production cost, and high efficiency. There are several experimental works to study ionic sieving properties of GO membranes. However, it is difficult to characterize atomistic mechanism of water permeation and ion rejection by experimental approaches. On the other hand, there exist a few reports in which the atomistic picture of water permeation across GO membranes is investigated by means of molecular dynamics (MD) simulation. In the present work, in addition to water desalination, the atomic scale mechanism of ion rejection is studied using large scale MD... 

    Nickel-cobalt layered double hydroxide ultrathin nanosheets coated on reduced graphene oxide nonosheets/nickel foam for high performance asymmetric supercapacitors

    , Article International Journal of Hydrogen Energy ; 2017 ; 03603199 (ISSN) Shahrokhian, S ; Rahimi, S ; Mohammadi, R ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Here in, for the first time, we report a new and simple procedure for preparing reduced graphene oxide/nickel-cobalt double layered hydroxide composite on the nickel foam (Ni-Co LDH/rGO/NF) via a fast and simple two-step electrochemical method including potentiostatic routes in the presence of CTAB as a cationic surfactant. Graphene oxide coated nickel foam prepared by simple immersion method. After that, the prepared electrode reduced electrochemically to obtain rGO/NF electrode. Finally, the rGO/NF electrode was used as cathode for electrodeposition of Ni-Co LDH in the presence of CTAB as cationic surfactant. The prepared electrodes were characterized by field emission scanning electron... 

    A novel enzyme based biosensor for catechol detection in water samples using artificial neural network

    , Article Biochemical Engineering Journal ; Volume 128 , 2017 , Pages 1-11 ; 1369703X (ISSN) Maleki, N ; Kashanian, S ; Maleki, E ; Nazari, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Biosensors could be used as digital devices to measure the sample infield. Consequently, computational programming along with experimental achievements are required. In this study, a novel biosensor/artificial neural network (ANN) integrated system was developed. Poly (3,4-ethylenedioxy-thiophene)(PEDOT), graphene oxide nano-sheets (GONs) and laccase (Lac) were used to construct a biosensor. The simple and one-pot process was accomplished by electropolymerizing 3,4-ethylenedioxy-thiophene (EDOT) along with GONs and Lac as dopants on glassy carbon electrode. Scanning electron microscopy (SEM) and electrochemical characterization were conducted to confirm successful enzyme entrapment. The... 

    Highly selective doped Pt[sbnd]MgO nano-sheets for renewable hydrogen production from APR of glycerol

    , Article International Journal of Hydrogen Energy ; Volume 41, Issue 39 , 2016 , Pages 17390-17398 ; 03603199 (ISSN) Larimi, A. S ; Kazemeini, M ; Khorasheh, F ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    A series of M-doped Pt[sbnd]MgO (M = Pd, Ir, Re, Ru, Rh and Cr) sheet-shaped nano-catalysts were synthesized by the controlled co-precipitation method. The effects of M-doping on both the physicochemical and the chemisorption characteristics of Pt[sbnd]MgO catalysts were examined. The performance of the catalysts for the aqueous phase reforming (APR) of glycerol was also investigated. The APR activity of Pt[sbnd]M[sbnd]MgO catalysts depended on the type of the M dopant used. The APR activity varied in the following order: Rh > Pd > Cr > Ir > undoped ≈ Ru > Re, with the Rh-promoted catalyst having an activity of about one order of magnitude higher than the Re-promoted catalyst at 250 °C. It... 

    Fabrication and surface stochastic analysis of enhanced photoelectrochemical activity of a tuneable MoS2-CdS thin film heterojunction

    , Article RSC Advances ; Volume 6, Issue 20 , 2016 , Pages 16711-16719 ; 20462069 (ISSN) Zirak, M ; Ebrahimi, M ; Zhao, M ; Moradlou, O ; Samadi, M ; Bayat, A ; Zhang, H. L ; Moshfegh, A. Z ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    A very simple and well-controlled procedure was employed to prepare CdS nanoparticle/few-layer MoS2 nanosheet/Indium tin oxide (ITO) thin film heterostructures. To tune and fabricate the CdS/MoS2(t)/ITO thin films with various surface topographies, first electrophoretic deposition (EPD) was used to deposit MoS2 nanosheets on the ITO substrate under an optimized applied potential difference (8 V) for different deposition times (t) of 30, 60, 120 and 240 s. Then, CdS nanoparticles were deposited via a successive ion layer adsorption and reaction (SILAR) technique. The highest photo-current density of 285 μA cm-2 was measured for the CdS/MoS2(60 s)/ITO sample, which was about 2.3 times higher... 

    Synthesis and cyto-genotoxicity evaluation of graphene on mice spermatogonial stem cells

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 146 , 2016 , Pages 770-776 ; 09277765 (ISSN) Hashemi, E ; Akhavan, O ; Shamsara, M ; Daliri, M ; Dashtizad, M ; Farmany, A ; Sharif University of Technology
    Elsevier  2016
    Abstract
    The present study analyzed the dose-dependent cyto- and genotoxicity of graphene oxide and reduced graphene oxide on spermatogonial stem cells (SSCs) for the first time. The results showed that graphene oxide significantly increased oxidative stress at concentrations of 100 and 400 μg/ml, while low concentrations did not have a significant effect. In addition, according to the MTT assay, the cell number decreased in high-concentration (100 and 400 μg/ml) graphene oxide-treated samples compared to untreated cells. However, a reduced graphene-treated sample demonstrated a significant increase in cell number. Moreover, microscopic analysis found high concentrations of graphene nanosheets in... 

    Physicochemical and antibacterial properties of chitosan-polyvinylpyrrolidone films containing self-organized graphene oxide nanolayers

    , Article Journal of Applied Polymer Science ; Volume 133, Issue 11 , 2016 ; 00218995 (ISSN) Mahmoudi, N ; Ostadhossein, F ; Simchi, A ; Sharif University of Technology
    John Wiley and Sons Inc  2016
    Abstract
    Chitosan films have a great potential to be used for wound dressing and food-packaging applications if their physicochemical properties including water vapor permeability, optical transparency, and hydrophilicity are tailored to practical demands. To address these points, in this study, chitosan (CS) was combined with polyvinylpyrrolidone (PVP) and graphene oxide (GO) nanosheets (with a thickness of ∼1 nm and lateral dimensions of few micrometers). Flexible and transparent films with a high antibacterial capacity were prepared by solvent casting methods. By controlling the evaporation rate of the utilized solvent (1 vol % acidic acid in deionized water), self-organization of GO in the... 

    The different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide nanosheets

    , Article Biomedical Materials (Bristol) ; Volume 11, Issue 2 , 2016 ; 17486041 (ISSN) Mahmoudifard, M ; Soleimani, M ; Hatamie, S ; Zamanlui, S ; Ranjbarvan, P ; Vossoughi, M ; Hosseinzadeh, S ; Sharif University of Technology
    Institute of Physics Publishing  2016
    Abstract
    Electrospinning of composite polymer solutions provides fantastic potential to prepare novel nanofibers for use in a variety of applications. The addition of graphene (G) and graphene oxide (GO) nanosheets to bioactive polymers was found to enhance their conductivity and biocompatibility. Composite conductive nanofibers of polyaniline (PANI) and polyacrylonitrile (PAN) with G and GO nanosheets were prepared by an electrospinning process. The fabricated membranes were investigated by physical and chemical examinations including scanning electron microscopy (SEM), Raman spectroscopy, x-ray diffraction (XRD) and tensile assay. The muscle satellite cells enriched by a pre-plating technique were... 

    Magnetic graphene oxide mesoporous silica hybrid nanoparticles with dendritic pH sensitive moieties coated by PEGylated alginate-co-poly (acrylic acid) for targeted and controlled drug delivery purposes

    , Article Journal of Polymer Research ; Volume 22, Issue 8 , 2015 ; 10229760 (ISSN) Pourjavadi, A ; Shakerpoor, A ; Tehrani, Z. M ; Bumajdad, A ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    In this study synthesis of a drug delivery system (DDS) is described which has several merits over its counterparts. In order to synthesize this nano-carrier, graphene oxide nano-sheets are used to accommodate MCM-41 nanoparticles. Furthermore Fe3O4 nanoparticles are introduced to this nano-material to produce a traceable nanoparticle. Since cancerous tissues have lower pH than healthy tissues, pH-sensitive oligomers are attached to this nano-material. Finally the nano-carrier is wrapped by a biocompatible shell (PEGylated sodium alginate); this polymeric shell makes the DDS capable of a more controllable drug release. By measuring in vitro situation, ‘loading content%’... 

    Controlled engineering of WS2 nanosheets-CdS nanoparticle heterojunction with enhanced photoelectrochemical activity

    , Article Solar Energy Materials and Solar Cells ; Volume 141 , 2015 , Pages 260-269 ; 09270248 (ISSN) Zirak, M ; Zhao, M ; Moradlou, O ; Samadi, M ; Sarikhani, N ; Wang, Q ; Zhang, H. L ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Abstract We report the well-controlled preparation of WS2 nanosheets-CdS nanoparticle heterojunction for photoelectrochemical (PEC) water splitting application. The WS2 nanosheets with an average thickness of ~5 nm and lateral dimensions of ~200 nm were synthesized via liquid phase exfoliation of bulk WS2 in water/ethanol solution, followed by deposition onto ITO substrate via electrophoretic method. CdS nanoparticles were grown via facile successive ion layer absorption and reaction (SILAR) method. Using these two well-controlled methods, CdS/WS2/ITO and WS2/CdS/ITO systems were fabricated. The loading of WS2 nanosheets was... 

    Physicochemical properties of hybrid graphene–lead sulfide quantum dots prepared by supercritical ethanol

    , Article Journal of Nanoparticle Research ; Volume 17, Issue 1 , January , 2015 ; 13880764 (ISSN) Tavakoli, M. M ; Tayyebi, A ; Simchi, A ; Aashuri, H ; Outokesh, M ; Fan, Z ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    Recently, hybrid graphene–quantum dot systems have attracted increasing attention for the next-generation optoelectronic devices such as ultrafast photo-detectors and solar energy harvesting. In this paper, a novel, one-step, reproducible, and solution-processed method is introduced to prepare hybrid graphene–PbS colloids by employing supercritical ethanol. In the hybrid nanocomposite, PbS quantum dots (~3 nm) are decorated on the reduced graphene oxide (rGO) nanosheets (~1 nm thickness and less than 1 micron lengths). By employing X-ray photoelectron and Raman and infrared spectroscopy techniques, it is shown that the rGO nanosheets are bonded to PbS nanocrystals through carboxylic bonds.... 

    Investigation of Thermomechanical Properties of UHMWPE/Graphene Oxide Nanocomposites Prepared by in situ Ziegler-Natta Polymerization

    , Article Advances in Polymer Technology ; Volume 34, Issue 4 , February , 2015 ; 07306679 (ISSN) Bahrami, H ; Ramazani, A.S.A ; Kheradmand, A ; Shafiee, M ; Baniasadi, H ; Sharif University of Technology
    John Wiley and Sons Inc  2015
    Abstract
    The graphene-based Ziegler-Natta catalyst has been used to prepare ultrahigh molecular weight polyethylene/graphene oxide (UHMWPE/GO) nanocomposite via in situ polymerization. The morphological investigations have been conducted using X-ray diffraction patterns and scanning electron microscopy method. The obtained results indicated that no diffraction peak is detected in a GO pattern, which could be due to the exfoliation of graphene nanosheets in the UHMWPE matrix. Morphological investigations indicated that GO nanosheets are dispersed almost uniformly in polymeric matrix, and that there should exist a good interaction between nanofillers and matrix. The mechanical properties of the... 

    Magnetite/dextran-functionalized graphene oxide nanosheets for in vivo positive contrast magnetic resonance imaging

    , Article RSC Advances ; Volume 5, Issue 59 , May , 2015 , Pages 47529-47537 ; 20462069 (ISSN) Moradi, S ; Akhavan, O ; Tayyebi, A ; Rahighi, R ; Mohammadzadeh, M ; Saligheh Rad, H. R ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Superparamagnetic iron oxide (SPIO) nanomaterials are widely used as magnetic resonance imaging (MRI) contrast agents (CAs). These CAs significantly shorten transverse relaxation time (T2) and so decrease the intensity of the T2-weighted MRI (negative contrast imaging). However, the partial-volume effect is known to be one of the problems in negative contrast MRI. In this work, SPIO nanoparticles were modified by dextran and graphene oxide (GO) nanosheets to achieve a positive contrast MRI with high intensity. This modification resulted in shortening the longitudinal relaxation time (T1) of the SPIO nanoparticles (in addition to the T2 shortening)....