Loading...
Search for: flow-of-fluids
0.014 seconds
Total 223 records

    Stress-jump and Continuity Interface Conditions for a Cylinder Embedded in a Porous Medium

    , Article Transport in Porous Media ; Volume 107, Issue 1 , 2015 , Pages 171-186 ; 01693913 (ISSN) Rashidi, S ; Nouri Borujerdi, A ; Valipour, M. S ; Ellahi, R ; Pop, I ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    The selection of interface boundary conditions between porous-medium and clear-fluid regions is very important for the wide range of engineering applications. In this paper, the difference between two common types of fluid flow interfacial conditions between clear fluid and porous medium is analyzed in detail. These two types of fluid flow interfacial condition are stress-jump and stress-continuity conditions. The effects of porosity on these types of interface condition are studied. The results are presented for different Reynolds numbers in the range 1–40, porosity equal to 0.4 and 0.8 and Darcy number Da=5×10-4. In this study, the Darcy–Brinkmann–Forchheimer model is used to model the... 

    Stagnation-point flow of upper-convected maxwell fluids

    , Article International Journal of Non-Linear Mechanics ; Volume 41, Issue 10 , 2006 , Pages 1242-1247 ; 00207462 (ISSN) Sadeghy, K ; Hajibeygi, H ; Taghavi, M ; Sharif University of Technology
    2006
    Abstract
    Two-dimensional stagnation-point flow of viscoelastic fluids is studied theoretically assuming that the fluid obeys the upper-convected Maxwell (UCM) model. Boundary-layer theory is used to simplify the equations of motion which are further reduced to a single non-linear third-order ODE using the concept of stream function coupled with the technique of the similarity solution. The equation so obtained was solved using Chebyshev pseudo-spectral collocation-point method. Based on the results obtained in the present work, it is concluded that the well-established but controversial prediction that in stagnation-point flows of viscoelastic fluids the velocity inside the boundary layer may exceed... 

    Stability analysis of a fractional viscoelastic plate strip in supersonic flow under axial loading

    , Article Meccanica ; Volume 52, Issue 7 , 2017 , Pages 1495-1502 ; 00256455 (ISSN) Asgari, M ; Permoon, M. R ; Haddadpour, H ; Sharif University of Technology
    Springer Netherlands  2017
    Abstract
    The stability of a viscoelastic plate strip, subjected to an axial load with the Kelvin–Voigt fractional order constitutive relationship is studied. Based on the classical plate theory, the structural formulation of the plate is obtained by using the Newton’s second law and the aerodynamic force due to the fluid flow is evaluated by piston theory. The Galerkin method is employed to discretize the equation of motion into a set of ordinary differential equations. To determine the stability margin of plate the obtained set of ordinary differential equations are solved using the Laplace transform method. The effects of variation of the governing parameters such as axial force, retardation time,... 

    SPH simulation of interacting solid bodies suspended in a shear flow of an Oldroyd-B fluid

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 166, Issue 21-22 , November , 2011 , Pages 1239-1252 ; 03770257 (ISSN) Hashemi, M. R ; Fatehi, R ; Manzari, M. T ; Sharif University of Technology
    2011
    Abstract
    An explicit weakly compressible SPH method is introduced to study movement of suspended solid bodies in Oldroyd-B fluid flows. The proposed formulation does not need further stabilizing treatments and can be efficiently employed to study particulate flows with Deborah to Reynolds number ratios up to around 10. A modified boundary treatment technique is also presented which helps to deal with the movement of solid particles in the flow. The technique is computationally efficient and gives an improved evaluation of fluid-solid interaction forces.A number of test cases are solved to show performance of the proposed method in simulating particulate viscoelastic flows containing circular and... 

    Soap-film flow induced by electric fields in asymmetric frames

    , Article Physical Review E ; Volume 97, Issue 4 , 2018 ; 24700045 (ISSN) Mollaei, S ; Nasiri, M ; Soltanmohammadi, N ; Shirsavar, R ; Ramos, A ; Amjadi, A ; Sharif University of Technology
    American Physical Society  2018
    Abstract
    Net fluid flow of soap films induced by (ac or dc) electric fields in asymmetric frames is presented. Previous experiments of controllable soap film flow required the simultaneous use of an electrical current passing through the film and an external electric field or the use of nonuniform ac electric fields. Here a single voltage difference generates both the electrical current going through the film and the electric field that actuates on the charge induced on the film. The film is set into global motion due to the broken symmetry that appears by the use of asymmetric frames. If symmetric frames are used, the film flow is not steady but time dependent and irregular. Finally, we study... 

    Size-dependent characteristics of electrostatically actuated fluid-conveying carbon nanotubes based on modified couple stress theory

    , Article Beilstein Journal of Nanotechnology ; Volume 4, Issue 1 , 2013 , Pages 771-780 ; 21904286 (ISSN) Fakhrabadi, M. M. S ; Rastgoo, A ; Ahmadian, M. T ; Sharif University of Technology
    2013
    Abstract
    The paper presents the effects of fluid flow on the static and dynamic properties of carbon nanotubes that convey a viscous fluid. The mathematical model is based on the modified couple stress theory. The effects of various fluid parameters and boundary conditions on the pull-in voltages are investigated in detail. The applicability of the proposed system as nanovalves or nanosensors in nanoscale fluidic systems is elaborated. The results confirm that the nanoscale system studied in this paper can be properly applied for these purposes  

    Simulation of wetting tendency of fluids with high density ratios using RK Lattice Boltzmann method

    , Article 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2019, 14 October 2019 through 18 October 2019 ; 2020 Sadeghi, M ; Pak, A ; Sadeghi, H ; Sharif University of Technology
    Asian Regional Conference on Soil Mechanics and Geotechnical Engineering  2020
    Abstract
    Several lattice Boltzmann models for multi-phase flow have been developed, but few of them are capable of modeling fluid flows with high density ratio in the order of 1000. Therefore, an advanced chromodynamics, Rothmann-Keller (RK) type model is employed in current study, which can handle liquid-gas density ratio in the order of 1000 and viscosity ratio in the order of 100. Other distinctive characteristics of the proposed model are high stability, and capability of setting parameters such as surface tension independently. In spite of these benefits, the original RK model fails to model wetting tendency of the fluids. As a result, it is impossible to correctly simulate two-fluid phase flow... 

    Simulation of thermal radiation in a micropolar fluid flow through a porous medium between channel walls

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 144, Issue 3 , 2021 , Pages 941-953 ; 13886150 (ISSN) Ahmad, S ; Ashraf, M ; Ali, K ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Among numerous methods which have been employed to reinforce the thermal efficiency in many systems, one is the thermal radiation which is a mode of heat transfer. Another way to improve the thermal efficiency is the utilization of the porous media. The present work includes the study of micropolar flow with allowance for thermal radiation through a resistive porous medium between channel walls. The governing coupled partial differential equations representing the flow model are transmuted into ordinary ones by using the suitable dimensionless coordinates, and then, quasi-linearization is employed to solve the set of relevant coupled ODEs. Effects of physical parameters on the flow under... 

    Simulation of thermal radiation in a micropolar fluid flow through a porous medium between channel walls

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 144, Issue 3 , 2021 , Pages 941-953 ; 13886150 (ISSN) Ahmad, S ; Ashraf, M ; Ali, K ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Among numerous methods which have been employed to reinforce the thermal efficiency in many systems, one is the thermal radiation which is a mode of heat transfer. Another way to improve the thermal efficiency is the utilization of the porous media. The present work includes the study of micropolar flow with allowance for thermal radiation through a resistive porous medium between channel walls. The governing coupled partial differential equations representing the flow model are transmuted into ordinary ones by using the suitable dimensionless coordinates, and then, quasi-linearization is employed to solve the set of relevant coupled ODEs. Effects of physical parameters on the flow under... 

    Simulation of the interaction between nonspherical particles within the CFD–DEM framework via multisphere approximation and rolling resistance method

    , Article Particulate Science and Technology ; 2015 , Pages 1-11 ; 02726351 (ISSN) Akhshik, S ; Behzad, M ; Rajabi, M ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    The particle shape is an important factor playing critical role in evaluation of the interactions between particles in high-concentration particle-fluid flows. In this paper, the well-known multisphere (MS) approximation approach and the novel rolling resistance approach are utilized to examine their performance in order to simplify the generalized shaped particle’s interactions within the framework of discrete element method (DEM) and computational fluid dynamics (CFD). The performance of two approaches are compared with the perfect particle’s shape geometry, for the limited cases of cubic-shaped and disk-shaped particle flows in a horizontal well drilling process as a reference scenario.... 

    Simulation of the interaction between nonspherical particles within the CFD–DEM framework via multisphere approximation and rolling resistance method

    , Article Particulate Science and Technology ; Volume 34, Issue 4 , 2016 , Pages 381-391 ; 02726351 (ISSN) Akhshik, S ; Behzad, M ; Rajabi, M ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    The particle shape is an important factor playing critical role in evaluation of the interactions between particles in high-concentration particle-fluid flows. In this paper, the well-known multisphere (MS) approximation approach and the novel rolling resistance approach are utilized to examine their performance in order to simplify the generalized shaped particle’s interactions within the framework of discrete element method (DEM) and computational fluid dynamics (CFD). The performance of two approaches are compared with the perfect particle’s shape geometry, for the limited cases of cubic-shaped and disk-shaped particle flows in a horizontal well drilling process as a reference scenario.... 

    Simulation of proppant transport at intersection of hydraulic fracture and natural fracture of wellbores using CFD-DEM

    , Article Particuology ; Volume 63 , 2022 , Pages 112-124 ; 16742001 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Proppants transport is an advanced technique to improve the hydraulic fracture phenomenon, in order to promote the versatility of gas/oil reservoirs. A numerical simulation of proppants transport at both hydraulic fracture (HF) and natural fracture (NF) intersection is performed to provide a better understanding of key factors which cause, or contribute to proppants transport in HF–NF intersection. Computational fluid dynamics (CFD) in association with discrete element method (DEM) is used to model the complex interactions between proppant particles, host fluid medium and fractured walls. The effect of non-spherical geometry of particles is considered in this model, using the multi-sphere... 

    Simulation of polymer chain driven by DPD solvent particles in nanoscale flows

    , Article ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010, 1 August 2010 through 5 August 2010, Montreal, QC ; Issue PARTS A AND B , 2010 , Pages 1035-1040 ; 9780791854501 (ISBN) Darbandi, M ; Zakeri, R ; Schneider, G. E ; Sharif University of Technology
    2010
    Abstract
    In this study, we simulate the motion and reformation of polymer chain in the nanoscale fluid flow motion of the DPD (Dissipative Particle Dynamics) solvent. The behavior of polymer chain through DPD solvent is studied for 2D and 3D considerations. We implement two body forces of Poiseuille flow and electroosmotic flow to the DPD fluid particles. In case of the electroosmotic flow force, we show that the movement of polymer chain via the electroosmotic phenomenon provides less dispersion than that of the Poiseuille flow for the same polymer chain movement  

    Simulation of incompressible two-phase flows with large density differences employing lattice Boltzmann and level set methods

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 198, Issue 2 , December , 2008 , Pages 223-233 ; 00457825 (ISSN) Mehravaran, M ; Hannani, S. K ; Sharif University of Technology
    2008
    Abstract
    A hybrid lattice Boltzmann and level set method (LBLSM) for two-phase immiscible fluids with large density differences is proposed. The lattice Boltzmann method is used for calculating the velocities, the interface is captured by the level set function and the surface tension force is replaced by an equivalent force field. The method can be applied to simulate two-phase fluid flows with the density ratio up to 1000. In case of zero or known pressure gradient the method is completely explicit. In order to validate the method, several examples are solved and the results are in agreement with analytical or experimental results. © 2008 Elsevier B.V. All rights reserved  

    Simulation of fluid flow through a granular bed

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Jafari, A ; Mousavi, S. M ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    Numerical study of flow through random packing of non-overlapping spheres in a cylindrical geometry is investigated. Dimensionless pressure drop has been studied for a fluid through the porous media at moderate Reynolds numbers (based on pore permeability and interstitial fluid velocity), and numerical solution of Navier-Stokes equations in three dimensional porous packed bed illustrated in excellent agreement with those reported by Macdonald [1979] in the range of Reynolds number studied. The results compare to the previous work (Soleymani et al., 2002) show more accurate conclusion because the problem of channeling in a duct geometry. By injection of solute into the system, the... 

    Simulation of buoyant bubble motion in viscous flows employing lattice Boltzmann and level set methods

    , Article Scientia Iranica ; Volume 18, Issue 2 B , 2011 , Pages 231-240 ; 10263098 (ISSN) Mehravaran, M ; Hannani, S. K ; Sharif University of Technology
    2011
    Abstract
    Recently, a hybrid Lattice Boltzmann Level Set Method (LBLSM) for two-phase incompressible fluids with large density differences, in cases of negligible or a priori known pressure gradients, has been proposed. In the present work, the mentioned LBLSM method is extended to take into account pressure gradient effects. The lattice Boltzmann method is used for calculating velocities, the interface is captured by the level set function, and the surface tension is replaced by an equivalent body force. The method can be applied to simulate two-phase fluid flows with density ratios up to 1000 and viscosity ratios up to 100. In order to validate the method, the evolution and merging of rising bubbles... 

    Simulation of an innovative flow-field design based on a bio inspired pattern for PEM fuel cells

    , Article Renewable Energy ; Volume 41 , 2012 , Pages 86-95 ; 09601481 (ISSN) Roshandel, R ; Arbabi, F ; Moghaddam, G. K ; Sharif University of Technology
    2012
    Abstract
    Proton exchange membrane (PEM) fuel cell performance is directly related to the bipolar plate design and their channels pattern. Power enhancements can be achieved by optimal design of the type, size, or patterns of the channels. It has been realized that the bipolar plate design has significant role on reactant transport as well as water management in a PEM Fuel cell. Present work concentrates on improvements in the fuel cell performance by optimization of flow-field design and channels configurations. A three-dimensional, multi-component numerical model of flow distribution based on Navier-Stokes equations using individual computer code is presented. The simulation results showed excellent... 

    Simulation of 2D fluid–structure interaction in inviscid compressible flows using a cell-vertex central difference finite volume method

    , Article Journal of Fluids and Structures ; Volume 67 , 2016 , Pages 190-218 ; 08899746 (ISSN) Hejranfar, K ; Azampour, M. H ; Sharif University of Technology
    Academic Press 
    Abstract
    In the present study, the applicability and accuracy of a cell-vertex finite volume method developed are assessed in simulating 2D fluid–structure interaction in inviscid compressible flows where the nonlinear phenomena exist in both the unsteady transonic fluid flows and the large nonlinear deformation of solid structures. The unsteady Euler equations are considered as the governing equations of the fluid flow in the arbitrary Lagrangian–Eulerian form and the large nonlinear deformation of the solid structure is considered to be governed by the Cauchy equations in the total Lagrangian form. Both the domains are discretized by a second-order central-difference cell-vertex finite volume... 

    Saffman-Taylor instability in yield stress fluids

    , Article Journal of Physics Condensed Matter ; Volume 17, Issue 14 , 2005 , Pages S1209-S1218 ; 09538984 (ISSN) Maleki Jirsaraei, N ; Lindner, A ; Rouhani, S ; Bonn, D ; Sharif University of Technology
    Institute of Physics Publishing  2005
    Abstract
    Pushing a fluid with a less viscous one gives rise to the well known Saffman-Taylor instability. This instability is important in a wide variety of applications involving strongly non-Newtonian fluids that often exhibit a yield stress. Here we investigate the Saffmann-Taylor instability in this type of fluid, in longitudinal flows in Hele-Shaw cells. In particular, we study Darcy's law for yield stress fluids. The dispersion equation for the flow is similar to the equations obtained for ordinary viscous fluids but the viscous terms in the dimensionless numbers conditioning the instability now contain the yield stress. This also has repercussions on the wavelength of the instability as it... 

    Rock Type Connectivity Estimation Using Percolation Theory

    , Article Mathematical Geosciences ; Vol. 45, issue. 3 , April , 2013 , p. 321-340 ; ISSN: 18748961 Sadeghnejad, S ; Masihi, M ; Pishvaie, M ; King, P. R ; Sharif University of Technology
    Abstract
    Complicated sedimentary processes control the spatial distribution of geological heterogeneities. This serves to make the nature of the fluid flow in the hydrocarbon reservoirs immensely complex. Proper modeling of these heterogeneities and evaluation of their connectivity are crucial and affects all aspects of fluid flow. Since the natural variability of heterogeneity occurs in a myriad of length scales, accurate modeling of the rock type connectivity requires a very fine scheme, which is computationally very expensive. Hence, this makes other alternative methods such as the percolation approach attractive and necessary. The percolation approach considers the hypothesis that a reservoir can...