Loading...
Search for: flow-of-fluids
0.011 seconds
Total 223 records

    Simulation of polymer chain driven by DPD solvent particles in nanoscale flows

    , Article ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010, 1 August 2010 through 5 August 2010, Montreal, QC ; Issue PARTS A AND B , 2010 , Pages 1035-1040 ; 9780791854501 (ISBN) Darbandi, M ; Zakeri, R ; Schneider, G. E ; Sharif University of Technology
    2010
    Abstract
    In this study, we simulate the motion and reformation of polymer chain in the nanoscale fluid flow motion of the DPD (Dissipative Particle Dynamics) solvent. The behavior of polymer chain through DPD solvent is studied for 2D and 3D considerations. We implement two body forces of Poiseuille flow and electroosmotic flow to the DPD fluid particles. In case of the electroosmotic flow force, we show that the movement of polymer chain via the electroosmotic phenomenon provides less dispersion than that of the Poiseuille flow for the same polymer chain movement  

    Effects of different heat flux schemes in modelling of transport phenomena during gas tungsten arc welding of AA1050

    , Article Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ; Volume 224, Issue 10 , 2010 , Pages 1537-1553 ; 09544054 (ISSN) Kohandehghan, A. R ; Serajzadeh, S ; Sharif University of Technology
    Abstract
    A three-dimensional model is utilized to predict temperature distribution and fluid flow during the process of gas tungsten arc welding (GTAW). In order to evaluate the effect of the heat flux model on the accuracy of predictions, two types of heat sources - with different natures based on Gaussian surface heat flux and volumetric Goldak's double-ellipsoid heat flux distributions - are taken into account. These heat flux schemes are input into a model simulation of GTAW of AA1050. In the next stage, the transient temperature distribution within the metal being welded is predicted for each heat flux model using FLUENT computational fluid dynamics software. The fusion and heat-affected zones... 

    On the application of fuzzy predictive control based on multiple models strategy to a tubular heat exchanger system

    , Article Transactions of the Institute of Measurement and Control ; Volume 32, Issue 4 , 2010 , Pages 395-418 ; 01423312 (ISSN) Mazinan, A. H ; Sadati, N ; Sharif University of Technology
    2010
    Abstract
    The purpose of the paper presented here is to control the fluid temperature that flows in the inner tube of a tubular heat exchanger system by means of the fluid flow pressure. This system in its present form has a specified range of the coefficients' variation, while the temperature of the outlet fluid could generally be controlled by either the temperature or the flow of the inlet fluid flowing in the shell tube. The control realization for the system presented is often complicated, because the variation of the system coefficients and the reference signal must be thoroughly covered by the control action. In such a case, the system behaviour must first be represented by the multiple... 

    A numerical analysis of thermal conductivity, thermal dispersion, and structural effects in the injection part of the resin transfer molding process

    , Article Journal of Porous Media ; Volume 13, Issue 4 , 2010 , Pages 375-385 ; 1091028X (ISSN) Layeghi, M ; Karimi, M ; Seyf, H. R ; Sharif University of Technology
    2010
    Abstract
    Thermal conductivity, thermal dispersion, and structural effects in resin transfer molding (RTM) process are studied numerically. The injection part of the RTM process is modeled as a transport of resin flow through a fibrous porous medium in a long rectangular channel. The fluid flow is modeled using the Darcy-Brinkman-Forchheimer model and the heat transfer process using the energy equation based on local thermal equilibrium assumption. Both isotropic and anisotropic heat transfer in porous media are investigated. The governing equations are solved numerically for the isotropic heat transfer case and analytically for the anisotropic case. The numerical results are fitted to the available... 

    Investigation of a nonlinear dynamic hydraulic system model through the energy analysis approach

    , Article Journal of Mechanical Science and Technology ; Volume 23, Issue 11 , 2010 , Pages 2973-2979 ; 1738494X (ISSN) Afshari, H. H ; Ehramianpour, M ; Mohammadi, M ; Sharif University of Technology
    Abstract
    The dynamics of a pressure regulator valve have been studied using the through Bondgraph simulation technique. This valve consists of several elements that can transmit, transform, store, and consume hydraulic energy. The governing equations of the system have been derived from the dynamic model. In solving system equations numerically, various pressure-flow characteristics across the regulator ports and orifices have been taken into consideration. This simulation study identifies some critical parameters that have significant effects on the transient response of the system. The results have been obtained using the MATLAB-SIMULINK environment. The main advantage of the proposed methodology... 

    Investigation of weld pool in aluminum alloys: geometry and solidification microstructure

    , Article International Journal of Thermal Sciences ; Volume 49, Issue 5 , 2010 , Pages 809-819 ; 12900729 (ISSN) Farzadi, A ; Serajzadeh, S ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    In the present research, weld pool geometry, thermal cycle, temperature and velocity fields during gas tungsten arc welding of aluminum alloys were predicted by solving three-dimensional equations of conservation of mass, energy and momentum under steady-state conditions. Welding experiments were then conducted on several samples with different thicknesses and chemical compositions. The geometries of the weld pools as well as the thermal cycles were measured. It is found that the calculated geometry of the weld fusion zone and the weld thermal cycles are in good agreement with the corresponding experimental results. In addition, the magnitude of the maximum velocities under different... 

    An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model

    , Article Finite Elements in Analysis and Design ; Volume 73 , 2013 , Pages 77-95 ; 0168874X (ISSN) Mohammadnejad, T ; Khoei, A. R ; Sharif University of Technology
    Abstract
    In this paper, a fully coupled numerical model is developed for the modeling of the hydraulic fracture propagation in porous media using the extended finite element method in conjunction with the cohesive crack model. The governing equations, which account for the coupling between various physical phenomena, are derived within the framework of the generalized Biot theory. The fluid flow within the fracture is modeled using the Darcy law, in which the fracture permeability is assumed according to the well-known cubic law. By taking the advantage of the cohesive crack model, the nonlinear fracture processes developing along the fracture process zone are simulated. The spatial discretization... 

    A neumerical method to investigate the effect of ultrasonic waves on capillary imbibition

    , Article 72nd European Association of Geoscientists and Engineers Conference and Exhibition 2010: A New Spring for Geoscience. Incorporating SPE EUROPEC 2010 ; Volume 5 , 2010 , Pages 3246-3250 ; 9781617386671 (ISBN) Keshavarzi, B ; Karimi, R ; Najafi, I ; Ghotbi, C ; Ghaedian, M ; Sharif University of Technology
    Society of Petroleum Engineers  2010
    Abstract
    A lot of laboratory experiments have been carried out to investigate each aspect of ultrasonic wave s role on fluid flow behavior through porous media. Despite all experimental works, little attention has been paid for modeling the ultrasonic wave influence on capillary imbibition, which is the main mechanism of production in fractured reservoirs. At this work the process of imbibition with and without applying ultrasonic waves is mathematically modeled by modification of piston-like model. In contrast to this model s assumption, in which mobility ratio is assumed to be constant, here permeability variation due to increase in water saturation is considered in numerical solution. To evaluate... 

    Identification of flow units using methods of testerman statistical zonation, flow zone index, and cluster analysis in tabnaak gas field

    , Article Journal of Petroleum Exploration and Production Technology ; Volume 6, Issue 4 , 2016 , Pages 577-592 ; 21900558 (ISSN) Mahjour, S. K ; Ghasem Al Askari, M. K ; Masihi, M ; Sharif University of Technology
    Springer Verlag 
    Abstract
    The relation between porosity and permeability parameters in carbonated rocks is complicated and indistinct. Flow units are defined with aim of better understanding reservoir unit flow behavior and relation between porosity and permeability. Flow units reflect a group of rocks with same geological and physical properties which affect fluid flow, but they do not necessarily coincide with boundary of facies. In each flow unit homogeneity of data is preserved and this homogeneity fades in the boundaries. Here, in this study, three methods are used for identification of flow units and estimation of average porosity and permeability in three wells of Tabnaak gas field located in south of Iran.... 

    Simulation of 2D fluid–structure interaction in inviscid compressible flows using a cell-vertex central difference finite volume method

    , Article Journal of Fluids and Structures ; Volume 67 , 2016 , Pages 190-218 ; 08899746 (ISSN) Hejranfar, K ; Azampour, M. H ; Sharif University of Technology
    Academic Press 
    Abstract
    In the present study, the applicability and accuracy of a cell-vertex finite volume method developed are assessed in simulating 2D fluid–structure interaction in inviscid compressible flows where the nonlinear phenomena exist in both the unsteady transonic fluid flows and the large nonlinear deformation of solid structures. The unsteady Euler equations are considered as the governing equations of the fluid flow in the arbitrary Lagrangian–Eulerian form and the large nonlinear deformation of the solid structure is considered to be governed by the Cauchy equations in the total Lagrangian form. Both the domains are discretized by a second-order central-difference cell-vertex finite volume... 

    Numerical modeling of ureagenesis in a microfluidic channel mimicking a liver lobule

    , Article 2015 22nd Iranian Conference on Biomedical Engineering, ICBME 2015, 25 November 2015 through 28 November 2015 ; 2015 , Pages 54-59 ; 9781467393515 (ISBN) Sharifi, F ; Firoozabadi, B ; Saidi, M. S ; Firoozbakhsh, K ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Ammonia detoxification is one of the main functions of the liver results in production of urea. In this study ammonia elimination and urea production was simulated in a microchannel mimicking the hepatic porto central axis. Navier- Stockes equations along with convection equations were solved for the related species in the entire domain. Since the Reynolds number was small (~1) the fluid flow regime was laminar. Urea cycle was modeled regarding its four main enzymes. Twelve rate equations were also solved in order to obtain the concentration of each metabolites participating in urea cycle. Concentration of the urea reached its maximum ca. 1.2e-5 M at the end of the channel which is in good... 

    Neural network prediction model of three-phase fluids flow in heterogeneous porous media using scaling analysis

    , Article Journal of Petroleum Science and Engineering ; Volume 138 , 2016 , Pages 122-137 ; 09204105 (ISSN) Zarringhalam, A ; Alizadeh, M ; Rafiee, J ; Moshirfarahi, M. M ; Sharif University of Technology
    Elsevier 
    Abstract
    Scaling analysis of fluid displacement in porous media is a reliable, fast method to evaluate the displacement performance of different oil production processes under various conditions. This paper presents the scaling studies of multiphase fluid flow through permeable media with a special attention to the three-phase immiscible water alternating gas (WAG) flooding under conditions prevailing in many oil reservoirs. The investigations are performed on a heterogeneous reservoir to study in detail the sensitivity of the displacement process to the scaling groups using various combinations of the process controlling parameters. The procedure of Inspectional analysis (IA) was utilized to... 

    Numerical study of external flow over ducts with various cross-sections

    , Article Defect and Diffusion Forum ; Volume 366 , 2016 , Pages 10-16 ; 10120386 (ISSN) Maleki, E ; Sadrhosseini, H ; Sharif University of Technology
    Trans Tech Publications Ltd 
    Abstract
    In this article a comprehensive numerical study is performed to compare the effect of fluid flow across a duct with various cross sectional shapes and with different velocities of the flow. Circular, elliptical and rectangular cross sections have been chosen for the ducts and air flows across them with four values of low Reynolds numbers in the range of Re = 1 to Re = 1000. Continuity and momentum equations with proper boundary conditions are solved in two dimensions. Streamlines, pressure distribution and Velocity profiles are obtained and creation of vortices, boundary layers, separation region, wake region, reattachment point and stagnation points are studied in detail and the results are... 

    A transient model of vanadium redox flow battery

    , Article Mechanics and Industry ; Volume 17, Issue 4 , 2016 ; 22577777 (ISSN) Ozgoli, H. A ; Elyasi, S ; Sharif University of Technology
    EDP Sciences  2016
    Abstract
    It has been attempted to gain a new viewpoint in transient cell modeling of vanadium redox flow battery. This has been achieved by considering electrochemical relations along with conceptual electrical circuit of this kind of battery. The redox flow battery is one of the best rechargeable batteries because of its capability to average loads and output power sources. A model of transient behavior is presented in this paper. The transient features are considered as the most remarkable characteristics of the battery. The chemical reactions, fluid flow, and electrical circuit of the structure govern the dynamics. The transient behavior of the redox flow battery based on chemical reactions is... 

    Conceptual duct shape design for horizontal-axis hydrokinetic turbines

    , Article Scientia Iranica ; Volume 23, Issue 5 , 2016 , Pages 2113-2124 ; 10263098 (ISSN) Zahedinejad, A ; Rad, M ; Khayat, M ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    In the present paper, conceptual duct shape design for kinetic energy extraction with hydrokinetic turbines is discussed. The goal is to find a single-passage axisymmetric geometry that holds stable flow with maximum kinetic energy flux at duct throat. For finding the optimum duct shape, the fluid flow was numerically simulated in a wedge shaped space with Flow-Simulation Software. In a multi-stage conceptual design, tabulated configurations were employed to study each geometrical characteristic separately. These include curvature of profile camber, trailing edge shape, profile tip shape, and duct exit cross sectional area. The revolved profile of each duct consists of a well constrained... 

    Blockage-ratio effect on aerosol behavior of soot nano-pm in a combustor burning jet propulsion fuel

    , Article 46th AIAA Thermophysics Conference, 2016, 13 June 2016 through 17 June 2016 ; 2016 ; 9781624104350 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2016
    Abstract
    In this study, we numerically investigate the size effect of a bluff body, embedded inside a combustor, on the formation of carbonaceous nano-particulate matter (PM). The combustor is fed with a jet propulsion fuel. We first evaluate our extended numerical tool by simulating a turbulent kerosene/air nonpremixed flame in a combustor. The achieved results are then compared with those of experiment. The comparisons show that there are good agreements between them. Next, we embed an O-ring type flame holder inside the combustor to change its configuration, i.e., to extend it to a bluff-body burner. Assuming a constant air mass flow rate, we investigate the blockage ratio effects of the burner... 

    Modeling of Non-Darcy flow through anisotropic porous media: Role of pore space profiles

    , Article Chemical Engineering Science ; Volume 151 , 2016 , Pages 93-104 ; 00092509 (ISSN) Veyskarami, M ; Hassani, A. H ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Excess pressure drop induced by inertial effects limits the applicability of Darcy's law for modeling of fluid flow through porous media at high velocities. It is expected such additional pressure drop is influenced by pore/morphology of porous media. This work concerns with fundamental understanding of how throat curvature affects intrinsic properties of porous media at non-Darcy flow conditions using network modeling. Conical, parabolic, hyperbolic, and sinusoidal capillary ducts with three types of imposed anisotropy are used to construct the network in a more realistic manner. Solutions of one dimensional Navier-Stokes equation for incompressible fluid flow through converging/diverging... 

    Electrokinetic and aspect ratio effects on secondary flow of viscoelastic fluids in rectangular microchannels

    , Article Microfluidics and Nanofluidics ; Volume 20, Issue 8 , 2016 ; 16134982 (ISSN) Reshadi, M ; Saidi, M. H ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    The secondary flow of PTT fluids in rectangular cross-sectional plane of microchannels under combined effects of electroosmotic and pressure driving forces is the subject of the present study. Employing second-order central finite difference method in a very refined grid network, we investigate the effect of electrokinetic and geometric parameters on the pattern, strength and the average of the secondary flow. In this regard, we try to illustrate the deformations of recirculating vortices due to change in the dimensionless Debye–Hückel and zeta potential parameters as well as channel aspect ratio. We demonstrate that, in the presence of thick electric double layers, significant alteration... 

    Recovery of drop in heat transfer rate for a rotating system by nanofluids

    , Article Journal of Molecular Liquids ; Volume 220 , 2016 , Pages 961-969 ; 01677322 (ISSN) Zeibi Shirejini, S. R ; Rashidi, S ; Abolfazli Esfahani, J ; Sharif University of Technology
    Elsevier 
    Abstract
    This paper simulates Al2O3-water nanofluid flow and forced convection around a rotating circular cylinder. The governing parameters are Reynolds number (1 ≤ Re ≤ 100), solid volume fraction of nanoparticles (0 ≤ φ ≤ 0.05) and non-dimensional rotation rate (0 ≤ α ≤ 3). The simulations are performed to study the effects of mentioned parameters on the heat transfer rate and fluid flow characteristics. The governing equations including the continuity, momentum, and energy equations are solved with a finite volume method. It is observed that the reduction of heat transfer with increase in rotation rate is in the vicinity of 6.9% and 32% for Re = 5 and 100, respectively at φ = 0.05. Furthermore,... 

    Simulation of the interaction between nonspherical particles within the CFD–DEM framework via multisphere approximation and rolling resistance method

    , Article Particulate Science and Technology ; Volume 34, Issue 4 , 2016 , Pages 381-391 ; 02726351 (ISSN) Akhshik, S ; Behzad, M ; Rajabi, M ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    The particle shape is an important factor playing critical role in evaluation of the interactions between particles in high-concentration particle-fluid flows. In this paper, the well-known multisphere (MS) approximation approach and the novel rolling resistance approach are utilized to examine their performance in order to simplify the generalized shaped particle’s interactions within the framework of discrete element method (DEM) and computational fluid dynamics (CFD). The performance of two approaches are compared with the perfect particle’s shape geometry, for the limited cases of cubic-shaped and disk-shaped particle flows in a horizontal well drilling process as a reference scenario....