Loading...
Search for: flow-of-fluids
0.008 seconds

    A rigorous algebraic-analytical method for pore network extraction from micro-tomography images

    , Article Journal of Hydrology ; Volume 590 , 2020 Barzegar, F ; Masihi, M ; Azadi Tabar, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Static and dynamic properties of porous media are highly dependent on its internal geometry. CT scan images are generally used to characterize porous media geometry. Direct simulation of fluid flow on CT scan images is possible but considerably time-consuming. In this study, a new method was developed for extracting a simplified representation known as “pore network model” by utilizing a rigorous algebraic-analytical method. By using a moving frame in the 3D matrix of the CT scan image and stepwise identifying-removing of image components, running time for a 4003 voxels sample in a typical computer system decreased to less than 350 s. The identification of throats was based on a new... 

    Study of the effect of thermal dispersion on internal natural convection in porous media using fourier series

    , Article Transport in Porous Media ; Volume 131, Issue 2 , 2020 , Pages 537-568 Fahs, M ; Graf, T ; Tran, T. V ; Ataie Ashtiani, B ; Simmons, C. T ; Younes, A ; Sharif University of Technology
    Springer  2020
    Abstract
    Natural convection in a porous enclosure in the presence of thermal dispersion is investigated. The Fourier–Galerkin (FG) spectral element method is adapted to solve the coupled equations of Darcy’s flow and heat transfer with a full velocity-dependent dispersion tensor, employing the stream function formulation. A sound implementation of the FG method is developed to obtain accurate solutions within affordable computational costs. In the spectral space, the stream function is expressed analytically in terms of temperature, and the spectral system is solved using temperature as the primary unknown. The FG method is compared to finite element solutions obtained using an in-house code... 

    Numerical simulation of proppant transport and tip screen-out in hydraulic fracturing with the extended finite element method

    , Article International Journal of Rock Mechanics and Mining Sciences ; Volume 128 , 2020 Hosseini, N ; Khoei, A. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, a numerical model is developed based on the X-FEM technique to simulate the proppant transport and tip screen-out in hydraulic fracturing. The governing equations are based on the momentum balance and mass conservation of the fluid. The hydro-mechanical coupling between the fracture and surrounding porous medium is fulfilled through the weak form of the governing equations. The fluid inflow within the fracture is modeled using the one-dimensional mass conservation of the injected slurry and proppant along the fracture, in which the viscosity of the slurry is dependent on the proppant concentration. The transition from the Poiseuille to Darcy flow regime is incorporated into... 

    Mesoscopic rheological modeling of drilling fluids: Effects of the electrolyte

    , Article Journal of Petroleum Science and Engineering ; Volume 195 , 2020 Kariman Moghaddam, A ; Ramazani Saadatabadi, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Drilling fluid is a complex fluid, including base fluid and other materials, carrying out the vital functions during drilling operation such as cutting transport and controlling formation pressure. In order to optimize performance of a drilling process, a reliable rheological model is required in the computation of fluid flow dynamics. Time-independent Generalized Newtonian formulation are the most common models for describing the rheological behavior of drilling fluids due to its simplicity and ease of use, in spite the fact that they are not able to predict the normal stresses and could not consider effects of active components on the rheological behavior of the drilling fluid and also... 

    A year-round study of a photovoltaic thermal system integrated with phase change material in Shanghai using transient model

    , Article Energy Conversion and Management ; Volume 210 , 2020 Kazemian, A ; Salari, A ; Ma, T ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the study, the daily and monthly performance of a photovoltaic thermal system integrated with phase change material is investigated in Shanghai, China. A three-dimensional model of photovoltaic thermal system integrated with phase change material system is developed and numerically simulated. Water is considered as working fluid, and the fluid flow regime is laminar and incompressible. Both quasi-steady and transient models are compared together, and the transient model is selected because of its higher accuracy. Validation analysis is performed on the numerical model to show the reasonable agreement of current research compared to some other research. After obtaining the suitable... 

    Heat transfer and fluid flow for tube included a porous media: Assessment and Multi-Objective Optimization Using Particle Swarm Optimization (PSO) Algorithm

    , Article Physica A: Statistical Mechanics and its Applications ; Volume 545 , 2020 Keykhah, S ; Assareh, E ; Moltames, R ; Izadi, M ; Ali, H. M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Increasing efficiency, improving energy consumption, and optimizing energy in industries are more than ever considered by researchers. Some methods such as nanoparticles use and porous medium are used to increase the heat transfer rate. For this reason, in this paper, simulation and optimization of a two-dimensional tube with the presence of water–silver nanofluid and porous media have been performed to improve heat transfer. Different profiles of the rate, pressure, and temperature of the two-dimensional tube at volume fraction, porosity coefficient and Darcy numbers have been obtained and finally, the results are compared. Then, the Nusselt number and the friction coefficient in the range... 

    Prediction of waterflood performance using a modified capacitance-resistance model: A proxy with a time-correlated model error

    , Article Journal of Petroleum Science and Engineering ; Volume 198 , March , 2020 Mamghaderi, A ; Aminshahidy, B ; Bazargan, H ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    Capacitance-Resistive Model (CRM), as a fast yet efficient proxy model, suffers from some limitations in modeling relatively complex reservoirs. Some current improvements on this proxy made it a more powerful simulator with updating parameters over time. However, the model's intrinsic uncertainty arisen from simplifying fluid-flow modeling by some limited number of constant parameters is not addressed yet. In this study, this structural limitation of CRM has been addressed by introducing a time-correlated model error, including stochastic and non-stochastic parameters, embedded into this proxy's formulation. The error term's non-stochastic parameters have been tuned to be used in forecasting... 

    Computational modeling of media flow through perfusion-based bioreactors for bone tissue engineering

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 234, Issue 12 , 2020 , Pages 1397-1408 Nokhbatolfoghahaei, H ; Bohlouli, M ; Adavi, K ; Paknejad, Z ; Rezai Rad, M ; khani, M. M ; Salehi-Nik, N ; Khojasteh, A ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    Bioreactor system has been used in bone tissue engineering in order to simulate dynamic nature of bone tissue environments. Perfusion bioreactors have been reported as the most efficient types of shear-loading bioreactor. Also, combination of forces, such as rotation plus perfusion, has been reported to enhance cell growth and osteogenic differentiation. Mathematical modeling using sophisticated infrastructure processes could be helpful and streamline the development of functional grafts by estimating and defining an effective range of bioreactor settings for better augmentation of tissue engineering. This study is aimed to conduct computational modeling for newly designed bioreactors in... 

    Nanofluid based photovoltaic thermal systems integrated with phase change materials: Numerical simulation and thermodynamic analysis

    , Article Energy Conversion and Management ; Volume 205 , 2020 Salari, A ; Kazemian, A ; Ma, T ; Hakkaki Fard, A ; Peng, J ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the current research, a three-dimensional photovoltaic thermal system integrated with phase change material system with nanofluids is investigated. The working fluids involved in this study include nano-magnesium oxide, multiwall carbon nano tube and hybrid (mixture of nano-magnesium oxide and nano-multiwall carbon nano tube) nanofluids dispersed in pure water. After comparing single-phase model and mixture model, the mixture model is used in the study and fluid flow regime in the collector is assumed to be laminar, fully develop, uniform and incompressible, to model the nanofluid in the system. A parametric analysis is conducted to examine the effect of various parameters such as working... 

    Phase-field simulation of weld solidification microstructure in an Al-Cu alloy

    , Article Modelling and Simulation in Materials Science and Engineering ; Volume 16, Issue 6 , 11 August , 2008 ; 09650393 (ISSN) Farzadi, A ; Do Quang, M ; Serajzadeh, S ; Kokabi, A. H ; Amberg, G ; Sharif University of Technology
    2008
    Abstract
    Since the mechanical properties and the integrity of the weld metal depend on the solidification behaviour and the resulting microstructural characteristics, understanding weld pool solidification is of importance to engineers and scientists. Thermal and fluid flow conditions affect the weld pool geometry and solidification parameters. During solidification of the weld pool, a columnar grain structure develops in the weld metal. Prediction of the formation of the microstructure during welding may be an important and supporting factor for technology optimization. Nowadays, increasing computing power allows direct simulations of the dendritic and cell morphology of columnar grains in the... 

    Simulation of incompressible two-phase flows with large density differences employing lattice Boltzmann and level set methods

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 198, Issue 2 , December , 2008 , Pages 223-233 ; 00457825 (ISSN) Mehravaran, M ; Hannani, S. K ; Sharif University of Technology
    2008
    Abstract
    A hybrid lattice Boltzmann and level set method (LBLSM) for two-phase immiscible fluids with large density differences is proposed. The lattice Boltzmann method is used for calculating the velocities, the interface is captured by the level set function and the surface tension force is replaced by an equivalent force field. The method can be applied to simulate two-phase fluid flows with the density ratio up to 1000. In case of zero or known pressure gradient the method is completely explicit. In order to validate the method, several examples are solved and the results are in agreement with analytical or experimental results. © 2008 Elsevier B.V. All rights reserved  

    A novel formulation to solve laminar difiusive flame in the cylindrical coordinates

    , Article 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 7 January 2008 through 10 January 2008 ; 2008 ; 9781563479373 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E ; Sharif University of Technology
    2008
    Abstract
    In this work, the conservation forms of the reacting ow governing equations are treated mainly using a cell-centered finite-volume approach with a collocated storage of all trans- port variables. However, the finite volume formulations are suitably incorporated with the finite element expressions. As an innovation, a physical influence upwinding scheme is suitably extended to the cylindrical coordinate system to approximate the convective terms of the governing conservation laws at the cell faces. This treatment firstly respects the physics of flow and secondly provides the necessary coupling of velocity and pressure fields in this frame. The numerical solution of laminar, buoyant difiusion... 

    Experimental and numerical investigation of fluid dynamics of the bounded and unbounded triangular jets

    , Article Proceedings of the ASME Turbo Expo, 9 June 2008 through 13 June 2008, Berlin ; Volume 5, Issue PART A , 2008 , Pages 41-47 ; 9780791843154 (ISBN) Riahi, R ; Bagheri, F ; Farhanieh, B ; Sharif University of Technology
    2008
    Abstract
    In the present study, the fluid characteristics of triangular turbulent jet flow are considered experimentally and numericafly. The results of spatially developed three- dimensional jet, issued from an equilateral triangular nozzle are presented. The jet is discharged to both bounded and unbounded domains. Because of the wind tunnel set up restrictions, the experimental study has done just for the bounded domain. The hot-wire anemometry is used for experimental study. A numerical method employing control volume approach with collocated grid arrangement which couples the velocity and pressure fields with SIMPLEC algorithm is introduced to discrete the governing equations of fluid flow. The... 

    A comparison of various routing protocols in Mobile Ad-hoc Networks (MANETs) with the use of Fluid flow simulation method

    , Article 4th International Conference on Wireless and Mobile Communications, ICWMC 2008, Athens, 27 July 2008 through 1 August 2008 ; 2008 , Pages 260-267 ; 9780769532745 (ISBN) Salehan, A ; Robatmili, M ; Abrishami, M ; Movaghar, A ; IARIA ; Sharif University of Technology
    2008
    Abstract
    One of the most important challenges in mobile Ad-hoc networks is simulation. The simulation of these networks based on the accessible simulation techniques, which are based on packet, is a demanding and time-consuming task. Moreover, with the complexity of the network and the increase in the numbers of the nodes, it is likely to take a long time. This is because these simulators, one by one, regard the acts of all moving packets in one part of the network, and process these acts as a series of events. Since the number of the events is high in this method, the simulation takes time. Nowadays, in wired networks, several methods have been suggested to lessen the time of simulation; one example... 

    Evaluation of rans approach in predicting the physics of incompressible turbulent jets-into-crossflow

    , Article ASME International Mechanical Engineering Congress and Exposition, IMECE 2007, Seattle, WA, 11 November 2007 through 15 November 2007 ; Volume 8 PART A , 2008 , Pages 683-698 ; 0791843025 (ISBN); 9780791843024 (ISBN) Javadi, K ; Taeibi Rahni, M ; Darbandi, M ; Sharif University of Technology
    2008
    Abstract
    This work is conducted with evaluation of different turbulence models capabilities in predicting three dimensional jet-into-crossflow (JICF) interactions. For this purpose, first of all, comprehensive discussions on the near wall flow complexities due to discharge of a jet into a crossflow are presented. In this regards, large scale coherent structures such as: counter rotating vortex pairs (CRVP's), near wall secondary motions, horseshoe vortices, and wall jets like are discussed. Secondly, the abilities of different turbulence models in predicting such flows (JICF) are evaluated. Our evaluation is based on three points of view including: 1) JICF characteristics, 2) computed location, and... 

    Simulation of wetting tendency of fluids with high density ratios using RK Lattice Boltzmann method

    , Article 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2019, 14 October 2019 through 18 October 2019 ; 2020 Sadeghi, M ; Pak, A ; Sadeghi, H ; Sharif University of Technology
    Asian Regional Conference on Soil Mechanics and Geotechnical Engineering  2020
    Abstract
    Several lattice Boltzmann models for multi-phase flow have been developed, but few of them are capable of modeling fluid flows with high density ratio in the order of 1000. Therefore, an advanced chromodynamics, Rothmann-Keller (RK) type model is employed in current study, which can handle liquid-gas density ratio in the order of 1000 and viscosity ratio in the order of 100. Other distinctive characteristics of the proposed model are high stability, and capability of setting parameters such as surface tension independently. In spite of these benefits, the original RK model fails to model wetting tendency of the fluids. As a result, it is impossible to correctly simulate two-fluid phase flow... 

    Improved advection algorithm of computational modeling of free surface flow using structured grids

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 195, Issue 7-8 , 2006 , Pages 775-795 ; 00457825 (ISSN) Babaei, R ; Abdollahi, J ; Homayonifar, P ; Varahram, N ; Davami, P ; Sharif University of Technology
    2006
    Abstract
    In the present study a finite difference method has been developed to model the transient fluid flow and heat transfer. A single fluid has been selected for modeling of mold filling and The SOLA-VOF 3D technique was modified to increase the accuracy of simulation of filling phenomena for shape castings. The model was then evaluated with the experimental methods. Refereeing to the experimental and simulation results a good consistency and the accuracy of the suggested model are confirmed. © 2005 Published by Elsevier B.V  

    Vibration control and manufacturing of intelligibly designed axially functionally graded cantilevered macro/micro-tubes

    , Article 13th IFAC Workshop on Intelligent Manufacturing Systems, IMS 2019, 12 August 2019 through 14 August 2019 ; Volume 52, Issue 10 , 2019 , Pages 382-387 ; 24058963 (ISSN) Mirtalebi, H ; Ebrahimi Mamaghani, A ; Ahmadian, M. T ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the last decade, extensive attention is devoted to intelligibly designed materials of macro/micro-structures containing the fluid flow. In this study, intelligent control and vibrational stability of cantilevered fluid conveying macro/micro-tubes utilizing axially functionally graded (AFG) materials are considered. The governing equation of motion of the system is derived based on modified couple stress theory and then is discretized using Galerkin method. A detailed investigation is carried out to elaborate the influence of various parameters such as material properties, axial compressive load, and Pasternak foundation on the dynamical behavior of the system, all of which are influential... 

    Modeling fluid flow in fractured porous media with the interfacial conditions between porous medium and fracture

    , Article Transport in Porous Media ; Volume 139, Issue 1 , 2021 , Pages 109-129 ; 01693913 (ISSN) Hosseini, N ; Khoei, A. R ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    One of the most popular models that has been applied to predict the fluid velocity inside the fracture with impermeable walls is the cubic law. It highlights that the mean flux along the fracture is proportional to the cubic of fracture aperture. However, for a fractured porous medium, the normal and tangential interface conditions between the fracture and porous matrix can change the velocity profile inside the fracture. In this paper, a correction factor is introduced for flow equation along the fracture by imposing the continuity of normal and tangential components of velocity at the interface between the fracture and porous matrix. As a result, the mean velocity inside the fracture... 

    Modeling non-isothermal two-phase fluid flow with phase change in deformable fractured porous media using extended finite element method

    , Article International Journal for Numerical Methods in Engineering ; Volume 122, Issue 16 , April , 2021 , Pages 4378-4426 ; 00295981 (ISSN) Khoei, A. R ; Amini, D ; Mortazavi, M. S ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    In this article, a computational model is presented for the analysis of coupled thermo-hydro-mechanical process with phase change (evaporation/condensation) in fractured porous media in order to model multiphase fluid flows, heat transfer, and discontinuous deformation by employing the extended finite element method. The ideal gas law and Dalton's law are employed to consider vapor and dry air as miscible gases. To take into account the phase change, latent heat and specific vapor enthalpy are incorporated into the physical model. The set of governing equations consists of linear momentum for the solid-phase, energy balance equation and mass conservation equations of water species (liquid...