Loading...
Search for: flow-of-fluids
0.008 seconds
Total 223 records

    Simulation of the interaction between nonspherical particles within the CFD–DEM framework via multisphere approximation and rolling resistance method

    , Article Particulate Science and Technology ; 2015 , Pages 1-11 ; 02726351 (ISSN) Akhshik, S ; Behzad, M ; Rajabi, M ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    The particle shape is an important factor playing critical role in evaluation of the interactions between particles in high-concentration particle-fluid flows. In this paper, the well-known multisphere (MS) approximation approach and the novel rolling resistance approach are utilized to examine their performance in order to simplify the generalized shaped particle’s interactions within the framework of discrete element method (DEM) and computational fluid dynamics (CFD). The performance of two approaches are compared with the perfect particle’s shape geometry, for the limited cases of cubic-shaped and disk-shaped particle flows in a horizontal well drilling process as a reference scenario.... 

    Numerical simulation of sand production experiment using a coupled Lattice Boltzmann-Discrete Element Method

    , Article Journal of Petroleum Science and Engineering ; Volume 135 , November , 2015 , Pages 218-231 ; 09204105 (ISSN) Ghassemi, A ; Pak, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this study, a coupled numerical approach based on Lattice Boltzmann Method (LBM) and Discrete Element Method (DEM) is employed for two-dimensional simulation of fluid flow in deformable particulate media comprising of movable circular particles. The developed LB-DE code is validated against the results of a bi-axial shear test as well as two well-known benchmark problems including settling of a circular particle under gravity force inside a viscous fluid, and motion of a neutrally buoyant particle released in a Poiseuille flow. The verified code is then utilized for simulation of "Sand Production" phenomenon which is of importance for oil producing wells in weakly cemented sandstone... 

    Rheology, stability and filtration characteristics of colloidal gas aphron fluids: role of surfactant and polymer type

    , Article Journal of Natural Gas Science and Engineering ; Volume 26 , September , 2015 , Pages 895-906 ; 18755100 (ISSN) Tabzar, A ; Arabloo, M ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Colloidal Gas Aphron (CGA) are finding increasing application in fields of science and engineering because of their distinctive characteristic. As interest in the application of CGA based fluids grows and in order to select the best procedure for using them in successful petroleum engineering operations, there is a need to gain a better understanding of the factors that affect their properties and behavior. This article discusses the rheological characterization, stability analysis and filtration properties of CGA based fluids for three bio-polymers and two ionic surfactant. The stability and filtration analysis were investigated with the static drain rate technique and API filtration tests,... 

    Nonlinear analysis of 2D flexible flapping wings

    , Article Nonlinear Dynamics ; Volume 81, Issue 1-2 , July , 2015 , Pages 299-310 ; 0924090X (ISSN) Abedinnasab, M. H ; Zohoor, H ; Yoon, Yong Jin ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    Natural flyers have flexible wings, which deform significantly under the combined inertial and aerodynamic forces. In this study, we focus on the role of chord wise flexibility in 2D pitch and plunge motions. We derive the exact nonlinear 2D equations of motion for a flexible flapping wing with flying support. In achieving the closed-form equations, we use the exact strain field concerning considerable elastic deformations. After numerically solving the novel equations, we validate them in simulations with highly deformable wings. By coupling the derived equations of motion with fluid flow, we study the aerodynamic performance of the geometrically nonlinear flexible flapping wing. Through... 

    Evaluation of a pressure splitting formulation for Weakly Compressible SPH: Fluid flow around periodic array of cylinders

    , Article Computers and Mathematics with Applications ; 2016 ; 08981221 (ISSN) Hashemi, M. R ; Manzari, M. T ; Fatehi, R ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper, a pressure splitting formulation is proposed for Weakly Compressible SPH (WC-SPH) method and its capability in the suppression of the spurious oscillations is studied by conducting a stability analysis. The proposed formulation is implemented within the framework of a consistent SPH method. The predictions from the theoretical analysis are verified by the results of numerical test-cases. This method is applied to the incompressible fluid flow around periodic array of circular cylinders. The accuracy and the convergence of the results are investigated for benchmark problems. The results are also compared with those of the conventional WC-SPH method. In a similar test-case, the... 

    Porous media approach in thermohydraulic analysis of high temperature reactors in pressurized/depressurized cooldown: An improvement

    , Article Progress in Nuclear Energy ; Volume 80 , 2015 , Pages 119-127 ; 01491970 (ISSN) Nouri Borujerdi, A ; Tabatabai Ghomsheh, S. I ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    The current study aims at introducing a 2D and fast-running code for the issues pertinent to design, analysis and safety in modular high temperature reactors. While the porous media approach is only applied to pebble bed type, the analysis in this paper covers both pebble bed and prismatic reactor. A time-dependent mass equation along with energy conservation equation for the cooling gas and a time-dependent energy conservation equation for the solid was solved. Appropriate series of constitutive equations (e.g. heat transfer coefficient, effective heat conductivity of solid, heat transfer coefficient, pressure drop etc.) has been recruited as well. In addition a finite-volume method is... 

    An improved porous media approach to thermal-hydraulics analysis of high-temperature gas-cooled reactors

    , Article Annals of Nuclear Energy ; Volume 76 , February , 2015 , Pages 485-492 ; 03064549 (ISSN) Nouri Borujerdi, A ; Tabatabai Ghomsheh, S. I ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    A precise thermal-hydraulics model is of great importance for developing more effective designs of High Temperature Gas Cooled Reactors (HTGR). Recently, several advancements have been made in the methods of analysis of porous media which could be of significant value in the development of more precise and robust codes. The objective of this research is to incorporate some of the most recent improvements in the development of a new 2D program for thermal-hydraulics analysis of modular high temperature reactors. The program is mainly based on the solution of a coupled set of mass, energy and momentum conservation equations for the gas flow, along with the energy conservation equation in the... 

    The Effects of Various Parameters on Wellbore Stability During Drilling Through Shale Formations

    , Article Petroleum Science and Technology ; Volume 33, Issue 12 , 2015 , Pages 1275-1285 ; 10916466 (ISSN) Rafieepour, S ; Ghotbi, C ; Pishvaie, M. R ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    Field evidence indicates that the thermal and chemical regimes in wellbore considerably affect the wellbore stability. This study presents a general coupled model for transport of solute, solvent and heat including their combined effects on the wellbore stability. Optimization of drilling fluid parameters is crucial for wellbore stability analysis particularly in high pressure-high temperature environments. The coupled effects of chemical potential and temperature gradients on fluid flow significantly change the pore pressure and stress around a borehole. The effects of various parameters such as mud weight, solute concentration gradient, shale properties, and temperature gradient on... 

    Computational zone adaptation strategy for unstructured grid users

    , Article 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 4 January 2010 through 7 January 2010, Orlando, FL ; 2010 ; 9781600867392 (ISBN) Fouladi, N ; Darbandi, M ; Schneider, G. E ; Sharif University of Technology
    2010
    Abstract
    This paper presents an advanced grid adaptation strategy to be used by unstructured grid users. The idea behind this strategy originates from the need for automatic control of computational grids during iterative procedures utilized by fluid flow solvers. This strategy eliminates unnecessary grid computations by dividing the unstructured grid into active and inactive zones automatically. The active zones are extended automatically in order to capture the propagation of disturbances in solution domain. In this work, we focus to solve the grid deformations which are imposed in some portions of the main body and are propagated into computational domain during the iterative solutions. To achieve... 

    A molecular dynamics study of fluid flows through slit-like nanochannels using two different driving systems

    , Article ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010, 1 August 2010 through 5 August 2010 ; Issue PARTS A AND B , 2010 , Pages 1029-1033 Darbandi, M ; Khaledi Alidusti, R ; Sabouri, M ; Abbasi, H. R ; Sharif University of Technology
    Abstract
    The Poiseuille flow through slit-like nanochannels is investigated using the nonequilibrium molecular dynamics simulations. To drive a dense flow through the channel, we use two self-adjusting vertical plates strategy. These plates force the liquid to flow through the nanochannel under adjustable inlet and outlet boundary conditions. Comparing with the dual-control-volume grand-canonical molecular dynamics method, the current strategy provides many advantages. The current strategy does not need particle insertion and deletion, therefore, the system dynamics would not be affected at all. Moreover, the number of particles in the simulation system is fixed due to inserting the two... 

    Numerical simulation of turbulent heat transfer on a rotating disk with an impinging jet

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 2 , 2010 , Pages 627-631 ; 9780791849163 (ISBN) Saidi, M. H ; Karrabi, H ; Avval, H. B ; Asgarshamsi, A ; Sharif University of Technology
    Abstract
    A numerical study has been carried out to investigate the fluid flow structure and convective heat transfer due to a circular jet impinging on a rotating disk. The temperature distribution and convection heat transfer coefficient on the disk are calculated. Flow is considered to be steady, incompressible and turbulent. k-e RNG model is used to model the turbulent flow. Two new criteria are introduced and used to evaluate the performance of cooling process which are maximum temperature difference on the disk and the average temperature of the disk. The first parameter shows the uniformity of temperature distribution in the disk and the second shows the effect of both thermo physical... 

    Fuzzy predictive control based multiple models strategy for a tubular heat exchanger system

    , Article Applied Intelligence ; Volume 33, Issue 3 , 2010 , Pages 247-263 ; 0924669X (ISSN) Mazinan, A. H ; Sadati, N ; Sharif University of Technology
    2010
    Abstract
    This work deals with the problem of controlling the outlet temperature of a tubular heat exchanger system by means of flow pressure. The usual industrial case is to try to control the outlet temperature by either the temperature or the flow of the fluid, which flows through the shell tube. But, in some situations, this is not possible, due to the fact that the whole of system coefficients variation cannot quite be covered by control action. In this case, the system behavior must precisely be modeled and appropriate control action needs to be obtained based on novel techniques. A new multiple models control strategy using the well-known linear generalized predictive control (LGPC) scheme has... 

    Effects of different heat flux schemes in modelling of transport phenomena during gas tungsten arc welding of AA1050

    , Article Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ; Volume 224, Issue 10 , 2010 , Pages 1537-1553 ; 09544054 (ISSN) Kohandehghan, A. R ; Serajzadeh, S ; Sharif University of Technology
    Abstract
    A three-dimensional model is utilized to predict temperature distribution and fluid flow during the process of gas tungsten arc welding (GTAW). In order to evaluate the effect of the heat flux model on the accuracy of predictions, two types of heat sources - with different natures based on Gaussian surface heat flux and volumetric Goldak's double-ellipsoid heat flux distributions - are taken into account. These heat flux schemes are input into a model simulation of GTAW of AA1050. In the next stage, the transient temperature distribution within the metal being welded is predicted for each heat flux model using FLUENT computational fluid dynamics software. The fusion and heat-affected zones... 

    On the application of fuzzy predictive control based on multiple models strategy to a tubular heat exchanger system

    , Article Transactions of the Institute of Measurement and Control ; Volume 32, Issue 4 , 2010 , Pages 395-418 ; 01423312 (ISSN) Mazinan, A. H ; Sadati, N ; Sharif University of Technology
    2010
    Abstract
    The purpose of the paper presented here is to control the fluid temperature that flows in the inner tube of a tubular heat exchanger system by means of the fluid flow pressure. This system in its present form has a specified range of the coefficients' variation, while the temperature of the outlet fluid could generally be controlled by either the temperature or the flow of the inlet fluid flowing in the shell tube. The control realization for the system presented is often complicated, because the variation of the system coefficients and the reference signal must be thoroughly covered by the control action. In such a case, the system behaviour must first be represented by the multiple... 

    Investigation of a nonlinear dynamic hydraulic system model through the energy analysis approach

    , Article Journal of Mechanical Science and Technology ; Volume 23, Issue 11 , 2010 , Pages 2973-2979 ; 1738494X (ISSN) Afshari, H. H ; Ehramianpour, M ; Mohammadi, M ; Sharif University of Technology
    Abstract
    The dynamics of a pressure regulator valve have been studied using the through Bondgraph simulation technique. This valve consists of several elements that can transmit, transform, store, and consume hydraulic energy. The governing equations of the system have been derived from the dynamic model. In solving system equations numerically, various pressure-flow characteristics across the regulator ports and orifices have been taken into consideration. This simulation study identifies some critical parameters that have significant effects on the transient response of the system. The results have been obtained using the MATLAB-SIMULINK environment. The main advantage of the proposed methodology... 

    Investigation of weld pool in aluminum alloys: geometry and solidification microstructure

    , Article International Journal of Thermal Sciences ; Volume 49, Issue 5 , 2010 , Pages 809-819 ; 12900729 (ISSN) Farzadi, A ; Serajzadeh, S ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    In the present research, weld pool geometry, thermal cycle, temperature and velocity fields during gas tungsten arc welding of aluminum alloys were predicted by solving three-dimensional equations of conservation of mass, energy and momentum under steady-state conditions. Welding experiments were then conducted on several samples with different thicknesses and chemical compositions. The geometries of the weld pools as well as the thermal cycles were measured. It is found that the calculated geometry of the weld fusion zone and the weld thermal cycles are in good agreement with the corresponding experimental results. In addition, the magnitude of the maximum velocities under different... 

    A neumerical method to investigate the effect of ultrasonic waves on capillary imbibition

    , Article 72nd European Association of Geoscientists and Engineers Conference and Exhibition 2010: A New Spring for Geoscience. Incorporating SPE EUROPEC 2010 ; Volume 5 , 2010 , Pages 3246-3250 ; 9781617386671 (ISBN) Keshavarzi, B ; Karimi, R ; Najafi, I ; Ghotbi, C ; Ghaedian, M ; Sharif University of Technology
    Society of Petroleum Engineers  2010
    Abstract
    A lot of laboratory experiments have been carried out to investigate each aspect of ultrasonic wave s role on fluid flow behavior through porous media. Despite all experimental works, little attention has been paid for modeling the ultrasonic wave influence on capillary imbibition, which is the main mechanism of production in fractured reservoirs. At this work the process of imbibition with and without applying ultrasonic waves is mathematically modeled by modification of piston-like model. In contrast to this model s assumption, in which mobility ratio is assumed to be constant, here permeability variation due to increase in water saturation is considered in numerical solution. To evaluate... 

    Simulation of 2D fluid–structure interaction in inviscid compressible flows using a cell-vertex central difference finite volume method

    , Article Journal of Fluids and Structures ; Volume 67 , 2016 , Pages 190-218 ; 08899746 (ISSN) Hejranfar, K ; Azampour, M. H ; Sharif University of Technology
    Academic Press 
    Abstract
    In the present study, the applicability and accuracy of a cell-vertex finite volume method developed are assessed in simulating 2D fluid–structure interaction in inviscid compressible flows where the nonlinear phenomena exist in both the unsteady transonic fluid flows and the large nonlinear deformation of solid structures. The unsteady Euler equations are considered as the governing equations of the fluid flow in the arbitrary Lagrangian–Eulerian form and the large nonlinear deformation of the solid structure is considered to be governed by the Cauchy equations in the total Lagrangian form. Both the domains are discretized by a second-order central-difference cell-vertex finite volume... 

    Neural network prediction model of three-phase fluids flow in heterogeneous porous media using scaling analysis

    , Article Journal of Petroleum Science and Engineering ; Volume 138 , 2016 , Pages 122-137 ; 09204105 (ISSN) Zarringhalam, A ; Alizadeh, M ; Rafiee, J ; Moshirfarahi, M. M ; Sharif University of Technology
    Elsevier 
    Abstract
    Scaling analysis of fluid displacement in porous media is a reliable, fast method to evaluate the displacement performance of different oil production processes under various conditions. This paper presents the scaling studies of multiphase fluid flow through permeable media with a special attention to the three-phase immiscible water alternating gas (WAG) flooding under conditions prevailing in many oil reservoirs. The investigations are performed on a heterogeneous reservoir to study in detail the sensitivity of the displacement process to the scaling groups using various combinations of the process controlling parameters. The procedure of Inspectional analysis (IA) was utilized to... 

    A transient model of vanadium redox flow battery

    , Article Mechanics and Industry ; Volume 17, Issue 4 , 2016 ; 22577777 (ISSN) Ozgoli, H. A ; Elyasi, S ; Sharif University of Technology
    EDP Sciences  2016
    Abstract
    It has been attempted to gain a new viewpoint in transient cell modeling of vanadium redox flow battery. This has been achieved by considering electrochemical relations along with conceptual electrical circuit of this kind of battery. The redox flow battery is one of the best rechargeable batteries because of its capability to average loads and output power sources. A model of transient behavior is presented in this paper. The transient features are considered as the most remarkable characteristics of the battery. The chemical reactions, fluid flow, and electrical circuit of the structure govern the dynamics. The transient behavior of the redox flow battery based on chemical reactions is...