Loading...
Search for: flow-of-fluids
0.008 seconds

    Prediction of grain growth behavior in haz during gas tungsten arc welding of 304 stainless steel

    , Article Journal of Materials Engineering and Performance ; Volume 18, Issue 9 , 2009 , Pages 1193-1200 ; 10599495 (ISSN) Jamshidi Aval, H ; Serajzadeh, S ; Kokabi, A. H ; Sharif University of Technology
    2009 
    Abstract
    In this study, the thermal cycles and the grain structure in the weld heat-affected zone (HAZ) are predicted. At the first stage, a combined heat transfer and fluid flow model is employed to assess the temperature fields during and after welding of 304 stainless steel and then, the evolution of grain structure is conducted using the predicted temperature distribution and an analytical model of grain growth. The grain sizes of the CGHAZ (coarse grain heat affected zone) achieved from the model are basically in agreement with those obtained from experimental measurement under different heat inputs in the range of 0.33-1.07 MJ/m. Both the experimental data and the calculated results show that... 

    Analytical study of fluid flow modeling by diffusivity equation including the quadratic pressure gradient term

    , Article Computers and Geotechnics ; Volume 89 , 2017 , Pages 1-8 ; 0266352X (ISSN) Abbasi, M ; Izadmehr, M ; Karimi, M ; Sharifi, M ; Kazemi, A ; Sharif University of Technology
    Abstract
    Diffusivity equation which can provide us with the pressure distribution, is a Partial Differential Equation (PDE) describing fluid flow in porous media. The quadratic pressure gradient term in the diffusivity equation is nearly neglected in hydrology and petroleum engineering problems such as well test analysis. When a compressible liquid is injected into a well at high pressure gradient or when the reservoir possess a small permeability value, the effect of ignoring this term increases. In such cases, neglecting this parameter can result in high errors. Previous models basically focused on numerical and semi-analytical methods for semi-infinite domain. To the best of our knowledge, no... 

    Heat transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field

    , Article Journal of Magnetism and Magnetic Materials ; Volume 429 , 2017 , Pages 314-323 ; 03048853 (ISSN) Fadaei, F ; Shahrokhi, M ; Molaei Dehkordi, A ; Abbasi, Z ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    In this article, three-dimensional (3D) forced-convection heat transfer of magnetic nanofluids in a pipe subject to constant wall heat flux in the presence of single or double permanent magnet(s) or current-carrying wire has been investigated and compared. In this regard, laminar fluid flow and equilibrium magnetization for the ferrofluid were considered. In addition, variations of magnetic field in different media were taken into account and the assumption of having a linear relationship of magnetization with applied magnetic field intensity was also relaxed. Effects of magnetic field intensity, nanoparticle volume fraction, Reynolds number value, and the type of magnetic field source... 

    Flow physics exploration of surface tension driven flows

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 518 , 2017 , Pages 30-45 ; 09277757 (ISSN) Javadi, K ; Moezzi Rafie, H ; Goodarzi Ardakani, V ; Javadi, A ; Miller, R ; Sharif University of Technology
    Abstract
    Surface tension driven passive micro-pumping relies mainly on the surface tension properties. To have control over surface tension driven passive micro-pumps (STD-PMPs), it is essential to understand the physical background of the fluid flow in these pumps. Hence, the purpose of this work is to give an exploration of the flow physics of a STD-PMP. In this regard, computer simulation is used to give detailed information about the flow pattern and physical phenomena at different conditions. To this end, a droplet of water, with a specified diameter, is placed onto an entry port connected to another droplet at the exit port via a microchannel. The results indicate that the pumping process, in... 

    A sequential implicit discrete fracture model for three-dimensional coupled flow-geomechanics problems in naturally fractured porous media

    , Article Journal of Petroleum Science and Engineering ; Volume 150 , 2017 , Pages 312-322 ; 09204105 (ISSN) Moradi, M ; Shamloo, A ; Dezfuli, A. D ; Sharif University of Technology
    Abstract
    A sequential implicit numerical method based on discrete-fracture model and the Galerkin Finite Element method, for time-dependent coupled fluid flow and geomechanics problems in fractured subsurface formations is presented. Discrete-fracture model has been used to explicitly represent the fracture network inside porous media. The Galerkin Finite Element method with adaptive unstructured gridding is implemented to numerically solve the spatially three-dimensional and time-dependent problem. The presented method is validated with previously obtained solutions. Two problems are numerically solved by applying the presented methodology in a three-dimensional fractured petroleum reservoir under... 

    Parallelized numerical modeling of the interaction of a solid object with immiscible incompressible two-phase fluid flow

    , Article Engineering Computations (Swansea, Wales) ; Volume 34, Issue 3 , 2017 , Pages 709-724 ; 02644401 (ISSN) Ghasemi, A ; Nikbakhti, R ; Ghasemi, A ; Hedayati, F ; Malvandi, A ; Sharif University of Technology
    Abstract
    Purpose - A numerical method is developed to capture the interaction of solid object with two-phase flow with high density ratios. The current computational tool would be the first step of accurate modeling of wave energy converters in which the immense energy of the ocean can be extracted at low cost. Design/methodology/approach - The full two-dimensional Navier-Stokes equations are discretized on a regular structured grid, and the two-step projection method along with multi-processing (OpenMP) is used to efficiently solve the flow equations. The level set and the immersed boundary methods are used to capture the free surface of a fluid and a solid object, respectively. The full... 

    Pure axial flow of viscoelastic fluids in rectangular microchannels under combined effects of electro-osmosis and hydrodynamics

    , Article Theoretical and Computational Fluid Dynamics ; Volume 32, Issue 1 , 2018 ; 09354964 (ISSN) Reshadi, M ; Saidi, M. H ; Ebrahimi, A ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien–Tanner (PTT) model with the Gordon–Schowalter convected derivative which covers the upper convected Maxwell, Johnson–Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson–Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid... 

    Electrokinetic properties of asphaltene colloidal particles: determining the electric charge using micro electrophoresis technique

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 541 , 2018 , Pages 68-77 ; 09277757 (ISSN) Azari, V ; Abolghasemi, E ; Hosseini, A ; Ayatollahi, S ; Dehghani, F ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this work, the electrokinetic properties of asphaltene particles have been investigated. Micro-electrophoresis method by applying DC electric field, was utilized to different mixtures containing asphaltene to determine its electric charge. It was observed that in the case of using n-heptane and its mixture with toluene (heptol), the asphaltene particles were showed to be positively charged however for toluene itself, they expressed no tendency toward the electrodes. While it is expected that larger asphaltene aggregates carry higher electric charge, the results contradictorily showed that they are mainly governed by gravity rather than electro-static force and that “aggregation” reduces... 

    Igniter jet dynamics in solid fuel ramjets

    , Article Acta Astronautica ; Volume 64, Issue 2-3 , 2009 , Pages 166-175 ; 00945765 (ISSN) Tahsini, A. M ; Farshchi, M ; Sharif University of Technology
    2009
    Abstract
    The dynamics of a two dimensional plane jet injected at the base of a step, parallel to the wall, in backward facing step flow geometry is numerically studied. The objective of this work is to gain insight into the dynamics of the igniter flow field in solid fuel ramjet motors. Solid fuel ramjets operate by ingestion of air and subsequent combustion with a solid fuel grain such as polyethylene. The system of governing equations is solved with a finite volume approach using a structured grid in which the AUSM+ scheme is used to calculate the convective fluxes. The Spalart and Allmaras turbulence model is used in these simulations. Experimental data have been used to validate the flow solver... 

    Theoretical and experimental study of microstructures and weld pool geometry during GTAW of 304 stainless steel

    , Article International Journal of Advanced Manufacturing Technology ; Volume 42, Issue 11-12 , 2009 , Pages 1043-1051 ; 02683768 (ISSN) Jamshidi Aval, H ; Farzadi, A ; Serajzadeh, S ; Kokabi, A. H ; Sharif University of Technology
    2009
    Abstract
    In this work, temperature field and weld pool geometry during gas tungsten arc welding of 304 stainless steel are predicted by solving the governing equations of heat transfer and fluid flow under quasi-steady state conditions. The model is based on numerical solution of the equations of conservation of mass, momentum, and energy in the weld pool. Weld pool geometry, weld thermal cycles, and various solidification parameters are then calculated by means of the model predictions. The model considers the effects of various process parameters including welding speed and heat input. It is found that the weld pool geometry, predicted by the proposed model, is in reasonable agreement with the... 

    An exact analytical model for fluid flow through finite rock matrix block with special saturation function

    , Article Journal of Hydrology ; Volume 577 , 2019 ; 00221694 (ISSN) Izadmehr, M ; Abbasi, M ; Ghazanfari, M. H ; Sharifi, M ; Kazemi, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    An exact analytical solution for one-dimensional fluid flow through rock matrix block is presented. The nonlinearity induced from flow functions makes the governing equations describing this mechanism difficult to be analytically solved. In this paper, an analytical solution to the infiltration problems considering non-linear relative permeability functions is presented for finite depth, despite its profound and fundamental importance. Elimination of the nonlinear terms in the equation, as a complex and tedious task, is done by applying several successive mathematical manipulations including: Hopf-Cole transformation to obtain a diffusive type PDE; an exponential type transformation to get a... 

    A multiphysics model for analysis of droplet formation in electrohydrodynamic 3D printing process

    , Article Journal of Aerosol Science ; Volume 135 , 2019 , Pages 72-85 ; 00218502 (ISSN) Mohammadi, K ; Movahhedy, M. R ; Khodaygan, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Electrohydrodynamic (EHD) printing is a novel technology used for fabricating high-resolution part features from a wide range of materials. Due to the multiphysics dynamics and the multiphase nature of the microdroplet formation in the EHD printers, modeling of this phenomenon is complicated. In this paper, the formation of a droplet in an EHD printer—under a pulsed electrical field—is simulated using a new numerical model which couples the fluid flow, the electric field distribution and the movement of the electric charges under dynamic and transient conditions. The level-set method is applied to the entire multiphysics domain in order to study the formation of the droplet. The presented... 

    Characterization of fracture dynamic parameters to simulate naturally fractured reservoirs

    , Article International Petroleum Technology Conference, IPTC 2008, Kuala Lumpur, 3 December 2008 through 5 December 2008 ; Volume 1 , 2008 , Pages 473-485 ; 9781605609546 (ISBN) Bahrami, H ; Siavoshi, J ; Parvizi, H ; Esmaili, S ; Karimi, M. H ; Nasiri, A ; Sharif University of Technology
    2008
    Abstract
    Fractures identification is essential during exploration, drilling and well completion of naturally fractured reservoirs since they have a significant impact on flow contribution. There are different methods to characterize these systems based on formation properties and fluid flow behaviour such as logging and testing. Pressure-transient testing has long been recognized as a reservoir characterization tool. Although welltest analysis is a recommended technique for fracture evaluation, but its use is still not well understood. Analysis of pressure transient data provides dynamic reservoir properties such as average permeability, fracture storativity and fracture conductivity.An infusion of... 

    Hydrodynamics analysis of Density currents

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 21, Issue 3 , 2008 , Pages 211-226 ; 1728-144X (ISSN) Afshin, H ; Firoozabadi, B ; Rad, M ; Sharif University of Technology
    Materials and Energy Research Center  2008
    Abstract
    Density Current is formed when a fluid with heavier density than the surrounding fluid flows down an inclined bed. These types of flows are common in nature and can be produced by; salinity, temperature inhomogeneities, or suspended particles of silt and clay. Driven by the density difference between inflow and clear water in reservoirs, density current plunges clear water and moves towards a dam, while density current flows on a sloping bed. The vertical spreading due to water entrainment has an important role in determining the propagation rate in the longitudinal direction. In this work, two-dimensional steady-state salt solutions' density currents were investigated by means of... 

    Contribution of water-in-oil emulsion formation and pressure fluctuations to low salinity waterflooding of asphaltic oils: A pore-scale perspective

    , Article Journal of Petroleum Science and Engineering ; Volume 203 , 2021 ; 09204105 (ISSN) Salehpour, M ; Sakhaei, Z ; Salehinezhad, R ; Mahani, H ; Riazi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    During the low salinity waterflooding (LSWF) of a viscous asphaltic oil reservoir, fluid-fluid interactions have a large influence on the fluid flow, pore-scale events, and thus oil recovery efficiency and behavior. In-situ water-in-oil (W/O) emulsion formation is a consequence of crude oil and brine interfacial activities. Despite the published studies, the pore-scale mechanisms of W/O emulsion formation and the role of injected brine salinity, injection rate, and pore-scale heterogeneity on emulsion formation and stability requires a deeper understanding. To address these, a series of static and dynamic micro-scale experiments were performed. The salinity dependent oil-brine interactions... 

    Efficient back analysis of multiphysics processes of gas hydrate production through artificial intelligence

    , Article Fuel ; Volume 323 , 2022 ; 00162361 (ISSN) Zhou, M ; Shadabfar, M ; Huang, H ; Leung, Y. F ; Uchida, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Natural gas hydrate, a crystalline solid existing under high-pressure and low-temperature conditions, has been regarded as a potential alternative energy resource. It is globally widespread and occurs mainly inside the pores of deepwater sediments and sediments under permafrost area. Hydrate production via well depressurization is deemed well-suited to existing technology, in which the pore pressure is lowered, the natural gas hydrate is dissociated into water and gas, and the water and gas are produced from well. This method triggers multiphysics processes such as fluid flow, heat transfer, energy adsorption, chemical reaction and sediment deformation, all of which are dependent on the... 

    Simulation of an innovative flow-field design based on a bio inspired pattern for PEM fuel cells

    , Article Renewable Energy ; Volume 41 , 2012 , Pages 86-95 ; 09601481 (ISSN) Roshandel, R ; Arbabi, F ; Moghaddam, G. K ; Sharif University of Technology
    2012
    Abstract
    Proton exchange membrane (PEM) fuel cell performance is directly related to the bipolar plate design and their channels pattern. Power enhancements can be achieved by optimal design of the type, size, or patterns of the channels. It has been realized that the bipolar plate design has significant role on reactant transport as well as water management in a PEM Fuel cell. Present work concentrates on improvements in the fuel cell performance by optimization of flow-field design and channels configurations. A three-dimensional, multi-component numerical model of flow distribution based on Navier-Stokes equations using individual computer code is presented. The simulation results showed excellent... 

    A multiple-point statistics algorithm for 3D pore space reconstruction from 2D images

    , Article Advances in Water Resources ; Volume 34, Issue 10 , October , 2011 , Pages 1256-1267 ; 03091708 (ISSN) Hajizadeh, A ; Safekordi, A ; Farhadpour, F. A ; Sharif University of Technology
    2011
    Abstract
    Fluid flow behavior in a porous medium is a function of the geometry and topology of its pore space. The construction of a three dimensional pore space model of a porous medium is therefore an important first step in characterizing the medium and predicting its flow properties. A stochastic technique for reconstruction of the 3D pore structure of unstructured random porous media from a 2D thin section training image is presented. The proposed technique relies on successive 2D multiple point statistics simulations coupled to a multi-scale conditioning data extraction procedure. The Single Normal Equation Simulation Algorithm (SNESIM), originally developed as a tool for reproduction of... 

    Fluid–structure interaction simulation of a cerebral aneurysm: effects of endovascular coiling treatment and aneurysm wall thickening

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 74 , 2017 , Pages 72-83 ; 17516161 (ISSN) Shamloo, A ; Nejad, M. A ; Saeedi, M ; Sharif University of Technology
    Abstract
    In the present study, we investigate the effect of the hemodynamic factors of the blood flow on the cerebral aneurysms. To this end, a hypothetical geometry of the aneurysm in the circle of Willis, located in the bifurcation point of the anterior cerebral artery (ACA) and anterior communicating artery (ACoA) is modeled in a three-dimensional manner. Three cases are chosen in the current study: an untreated thin wall (first case), untreated thick wall (second case), and a treated aneurysm (third case). The effect of increasing the aneurysm wall thickness on the deformation and stress distribution of the walls are studied. The obtained results showed that in the second case, a reduction in the... 

    Modeling of heat transfer and fluid flow during gas tungsten arc welding of commercial pure aluminum

    , Article International Journal of Advanced Manufacturing Technology ; Volume 38, Issue 3-4 , 2008 , Pages 258-267 ; 02683768 (ISSN) Farzadi, A ; Serajzadeh, S ; Kokabi, A. H ; Sharif University of Technology
    2008
    Abstract
    In the present study, the temperature and the velocity fields during gas tungsten arc welding of commercial pure aluminum were simulated using the solution of the equations of conversation of mass, energy and momentum in three dimensions and under steady-state heat transfer and fluid flow conditions. Then, by means of the prediction of temperature and velocity distributions, the weld pool geometry, weld thermal cycles and various solidification parameters were calculated. To verify the modeling results, welding experiments were conducted on two samples with different thicknesses and the geometry of the weld pool was measured. It is found that there is a good agreement between the predicted...