Loading...
Search for: electrostatics
0.006 seconds
Total 210 records

    Synthesis and Investigation of Physical Properties of PVDF/Graphene Nanostructured Membranes for Molecular Sieving

    , M.Sc. Thesis Sharif University of Technology Khan Sanami, Mehran (Author) ; Esfandiar, Ali (Supervisor)
    Abstract
    Poly vinylidene fluoride (PVDF) as a fluorine polymer with acceptable thermal, chemical and physical property attractive create attention in membrane technology for water treatment application. However, with differential surface free energy between PVDF and water (∆G_s=30 mJ/m^2) PVDF polymer is divided as a hydrophobic materials, that is one of the basic problem for PVDF polymer. Due to its hydrophobicity the water molecules repulsion away from hydrophobic PVDF membrane surface as a spontaneous process with an entropy increasing and therefore pollutant molecules with hydrophobic functional group have tendency to adsorb onto membrane surface and dominate the boundary layer. In recent years... 

    Investigation & Analysis of Lens-like Effects in Nano Metallic Meshes

    , M.Sc. Thesis Sharif University of Technology Rohani, Ali (Author) ; Rashidian, Bijan (Supervisor) ; Mehrany, Khashayar (Supervisor)
    Abstract
    Charged particle lenses perform two types of operations. One purpose of lenses is to confine a beam, or maintain a constant or slowly varying radius. This is important in high-energy accelerators where particles must travel long distances through a small bore.A second function of lenses is to focus beams or compress them to the smallest possible radius. If the particles are initially parallel to the axis, a linear field lens aims them at a common point. Focusing leads to high particle flux or a highly localized beam spot. Focusing is important for applications such as scanning electron microscopy, ion microprobes, and ion-beam-induced inertial fusion. All modern lenses, have fully metal... 

    Numerical Simulation of DBD Plasma Actuator and Optimization for Separation Control

    , M.Sc. Thesis Sharif University of Technology Omidi, Javad (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    Here we have used CFD to simulate the flow field around a DBD plasma active controller for flow control. Enhanced Electrostatic model is applied to model the plasma actuator, by solution of two elliptic equations to find electric field and charge density in whole flow field. So, it provided the body force by neglecting the magnetic forces in Lorentz equation. The body force is added to the momentum equation as a source term. A commercial software FLUENT is used for this simulation. To validate the algorithm, flow over a flat plate using DBD actuator is solved and results are compared with experimental and numerical results. Flow control around a cylinder with Reynolds number of 18,000 is... 

    Design and Simulation of an Electrowetting Micro-Pump

    , M.Sc. Thesis Sharif University of Technology Ebrahimi, Amin (Author) ; Javadi, Khodayar (Supervisor)
    Abstract
    Micropumps are one of the most important devices in the field of microfluidics which have many applications in various fields of engineering. Electrostatic excitation is one of the types of excitation mechanisms in micropumps that is widely used in microelectromechanical systems due to its low power consumption and easier control. In this research, first, the physics of droplets on the surface studied, important dimensionless numbers and other factors influencing microfluidic phenomena are investigated. The effective parameters of the droplet motion and the mechanism of this motion are described. Besides, the phenomenon of electrowetting, one of the phenomena in the field of dynamics of... 

    Improving the Performance of the Electrostatic Precipitator Used in Cement Plant

    , M.Sc. Thesis Sharif University of Technology Sabah Kadhm Alkaabi, Dhiyaa (Author) ; Sadrhosseini, Hani (Supervisor) ; Pasharavesh, Abdolreza (Supervisor)
    Abstract
    Electrostatic precipitators are widely used in cement plants to remove impurities and dust from the exhaust gases. The filtration mechanism is based on using high intensity electric fields which first ionize the particles and then absorb them toward the collecting electrodes. The corrosion effect is one of the major problems associated with electrostatic precipitators which not only can negatively affect their operation efficiency but also decreases their life-time through breakage occurrence in the corroded electrodes. One of the commonly used methods to suppress this negative effect and increase the total working hours of the device is to cut the bottom part of the first collecting plate... 

    Evaluation the Effect of Molecular-Structural Properties of Asphaltene Fraction on Wettability Alteration and Crude Oil Dynamic Flow in Porous Media

    , M.Sc. Thesis Sharif University of Technology Bastami, Dariush (Author) ; Taghikhani, Vahid (Supervisor) ; Shahrabadi, Abbas (Co-Supervisor) ; Naderi, Hassan (Co-Supervisor) ; Taheri Shakib, Jaber (Co-Supervisor)
    Abstract
    In order to investigate the effect of molecular-structural properties of asphaltene fraction on changes in wettability and flow of crude oil in the porous medium, four crude oil samples from oil fields in southern Iran were tested ;To know the characteristics of crude oil, molecular-structural properties of asphaltene fraction and the effect of asphaltene fraction on the wettability properties of surface, Experiments such as crude oil density and viscosity measurement, crude oil hydrocarbon analysis, asphaltene extraction with standard IP-143 method, elemental analysis and metal content, gel permeation chromatography, nuclear magnetic resonance, interaction between rock and asphaltene.... 

    Filtration Based on Electrostatic Devices

    , M.Sc. Thesis Sharif University of Technology Rahimi, Neda (Author) ; Saidi, Mohammad Said (Supervisor) ; Sani, Mahdi (Supervisor)
    Abstract
    Particulate air pollution is one of the top environmental health risks. Industrial processes like power generation from fossil fuels and steel and cement manufacturing release a huge amount of particles into the atmosphere. Moreover, internal combustion engines produce a considerable amount of particulate matter in populated areas. The usual way to overcome this risk is using air-cleaning devices such as filters. Filters are designed for specific purposes like removing aerosol particles, aerosol sampling and collecting valuable particles. Because of its diverse applications, filtration has become an active area of research and many kinds of filters are currently available. One type of... 

    Modeling and Statical, Vibrational and Dynamical Analysis of Electrically actuated Microplates Using the Extended Kantorovich Method

    , M.Sc. Thesis Sharif University of Technology Moeinfard, Hamid (Author) ; Ahmadiyan, Mohammad Taghi (Supervisor)
    Abstract
    Nano/Microelectromechanical systems have generated a great impact on industry and technology. There are many applications for these systems in micropumps, airbag accelerometers and inkjet printer heads. In theses systems mechanical and electrical fields are involved with each other, and complexities due to this involvement has prevented the scientific society from an effective tool for analysis of this systems in computational point of view. So the objective of this project is to use the Extended Kantorovich method to solve the equations of microplate deformation due to electrostatic actuation. This method is based on variational principals and it uses an initial guess function which doesn’t... 

    Numerical Study on the Influence of Magnetic and Electric Fields on Filtration Performance of Wet Granular Beds

    , M.Sc. Thesis Sharif University of Technology Sabbaghian, Sina (Author) ; Moosavi, Ali (Supervisor) ; Sadrhosseini, Hani (Supervisor)
    Abstract
    The aim of this study is to develop an understanding of the role of the magnetic and electric forces on the filtration performance of wet granular beds. At first, the effect of wetting is considered by locating micro water film around the square channel for particles deposition in four different Reynolds Re=1 to Re=10 number, Typically 1000 particles in different sizes (100nm-10μm) were injected to microchannel when air and water formed completely on the surface of the block. The Drag force, Brownian force, Saffman`s lift force and the gravity force are affecting the particles. After that Dielectrophoretic and Magnetophoretic forces were included in the domain for investigating the role of... 

    Nonlinear tracking control of a microbeam displacement by electrostatic actuation

    , Article World Academy of Science, Engineering and Technology ; Volume 79 , July , 2011 , Pages 232-236 ; ISSN: 2010376X Karami, F ; Layeghi, H ; Salarieh, H ; Alasti, A ; Sharif University of Technology
    Abstract
    In this study tracking problem of tip of a micro cantilever, actuated by electrostatic, is investigated. Dynamic model of the system is a PDE. Using electrostatic actuation.introduced significant nonlinearity in dynamic model of the system. Control goals are achieved by means of backstepping for SI and feedback linearization for MI system. Performance of control system is inspected for some assumptions and simplifications. The results are in according to numerical simulations  

    Enhancing tilt range of electrostatic torsional micromirrors using robust adaptive critic-based neurofuzzy control

    , Article ISA Transactions ; Vol. 53, issue. 5 , Sep , 2014 , p. 1592-1602 ; ISSN: 00190578 Malmir, H ; Salarieh, H ; Sharif University of Technology
    Abstract
    Electrostatic torsional micromirrors, as instances of Micro Electro Mechanical Systems (MEMS), have many optical network applications; such as optical wavelength-selective switches, optical cross-connects, etc. For all these applications, the micromirror needs to have minimal overshoot and settling time in order to minimize the time between two successive switching operations. Moreover, the controllability and stability of a torsional micromirror are major challenges due to high nonlinearities in its dynamic characteristics. In this paper, a robust adaptive critic-based neurofuzzy controller is proposed for electrostatic torsional micromirrors, which can improve the performance of the mirror... 

    Dynamics of bistable initially curved shallow microbeams: Effects of the electrostatic fringing fields

    , Article IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM ; July , 2014 , p. 1279-1283 Tajaddodianfar, F ; Yazdiو M. H ; Pishkenariو H. N ; Sharif University of Technology
    Abstract
    Effects of fringing electrostatic fields on the behavior of a double clamped initially curved microbeam are investigated. Galerkin's decomposition method is applied on the governing Euler-Bernoulli equation with distributed electrostatic force to obtain the lumped-parameter model of the system. The resulting single degree of freedom model is obtained with the Palmer's formula as a model for the fringing field effects. To derive an applied form of the fringing field effect in lumped model, we have used Genetic Algorithms as an optimization method. Then using the lumped model, we have investigated the system nonlinear dynamics. Comparison of the obtained bifurcation diagrams with the... 

    Analytical modeling of bending effect on the torsional response of electrostatically actuated micromirrors

    , Article Optik ; Volume 124, Issue 12 , June , 2013 , Pages 1278-1286 ; 00304026 (ISSN) Moeenfard, H ; Ahmadian, M. T ; Sharif University of Technology
    2013
    Abstract
    This paper presents analytical soltions for the nonlinear problem of electrostatically actuated torsional micromirrors considering the bending of the torsional beams. First the energy method is used for finding the equilibrium equations. Then the explicit function theorem is utilized for finding the equations governing the instability mode of the mirror. These equations are then solved using Homotopy Perturbation Method (HPM) for the especial case of α = 0 where α is a small nondimensional geometrical parameter defining the starting point of the underneath electrodes. Then straight forward perturbation method is applied for finding the pull-in angle and pull-in displacement of the... 

    The effect of small scale on the pull-in instability of nano-switches using DQM

    , Article International Journal of Solids and Structures ; Volume 50, Issue 9 , 2013 , Pages 1193-1202 ; 00207683 (ISSN) Mousavi, T ; Bornassi, S ; Haddadpour, H ; Sharif University of Technology
    2013
    Abstract
    This paper deals with the study of the small scale effect on the pull-in instability of nano-switches subjected to electrostatic and intermolecular forces. Using Eringen's nonlocal elasticity theory, the nonlocal Euler-Bernoulli beam model is derived through virtual displacement principle. The static governing equation which is extremely nonlinear due to the intermolecular and electrostatic attraction forces is solved numerically by differential quadrature method. The accuracy of the present method is verified by comparing the obtained results with the finite difference method and those in the literatures and very good agreement is obtained. Finally a comprehensive study is carried out to... 

    System and method for analysis of involving factors in the demisting cyclone efficiency

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), San Diego, CA ; Volume 15 , November , 2013 ; 9780791856444 (ISBN) Najafabadi, M. M ; Ehteram, M. A ; Ahmadian, M. T ; Barari, A ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    In this study a system for real-time analysis of some involving factors in the efficiency of gas-liquid separators is developed based on the weighing method. An ultrasonic atomizer generates water drops in a size range of 1-10 μm with the same frequency during the test. A cyclone separator is selected and effect of the developing flow rate and shape of the mini-riser as a part of connecting assembly to the cyclone separator is investigated. Further an efficient electrostatic precipitator (ESP) with outcome of single-phase airflow is employed in the downstream of the cyclone to separate remaining droplets and produce the same pressure loss during the test. Circular, triangular, rectangular... 

    Analytical investigation and numerical verification of Casimir effect on electrostatic nano-cantilevers

    , Article Microsystem Technologies ; Volume 14, Issue 2 , 2008 , Pages 145-157 ; 09467076 (ISSN) Ramezani, A ; Alasty, A ; Akbari, J ; Sharif University of Technology
    2008
    Abstract
    In this paper, the two-point boundary value problem (BVP) of the nano-cantilever deflection subjected to Casimir and electrostatic forces is investigated using analytical and numerical methods to obtain the instability point of the nano-beam. In the analytical treatment of the BVP, the nonlinear differential equation of the model is transformed into the integral form by using the Green's function of the cantilever beam. Then, closed-form solutions are obtained by assuming an appropriate shape function for the beam deflection to evaluate the integrals. The pull-in parameters of the beam are computed under the combined effects of electrostatic and Casimir forces. Electrostatic microactuators... 

    Manipulation of the electric field of electrospinning system to produce polyacrylonitrile nanofiber yarn

    , Article Journal of the Textile Institute ; Volume 98, Issue 3 , 2007 , Pages 237-241 ; 00405000 (ISSN) Dabirian, F ; Hosseini, Y ; Hosseini Ravandi , S. A ; Sharif University of Technology
    2007
    Abstract
    Electrospinning is a process that produces nanofiber through the action of an external electric field imposed on a polymer solution or melt. This paper introduces a new system capable of producing continuous uniaxially aligned PAN nanofiber yarn by manipulating the electric field. The manipulation was carried out by employing a negative charged bar in the electric field of conventional electrospinning system, leading to the formation of an electrostatic multipolar field. As a result, the main stream was redirected towards a rotating take up unit, collecting the twisted yarn consisting of uniaxially aligned nanofibers. The yarns were then treated in boiling water under tension and their... 

    Synthesis of high surface area nanocrystalline anatase-TiO2 powders derived from particulate sol-gel route by tailoring processing parameters

    , Article Journal of Sol-Gel Science and Technology ; Volume 40, Issue 1 , 2006 , Pages 15-23 ; 09280707 (ISSN) Mohammadi, M. R ; Cordero Cabrera, M. C ; Ghorbani, M ; Fray, D.J ; Sharif University of Technology
    2006
    Abstract
    Stabilised titania sols were prepared using an additive free particulate sol-gel route, via electrostatic stabilisation mechanism, with various processing parameters. Peptisation temperature, 50°C and 70°C, and TiO2 concentration, 0.1, 0.2 and 0.4 molar, were chosen as processing parameters during sol preparation. Results from TiO2 particle size and zeta potential of sols revealed that the smallest titania hydrodynamic diameter (13 nm) and the highest zeta potential (47.7 mV) were obtained for the sol produced at the lower peptisation temperature of 50°C and lower TiO 2 concentration of 0.1 M. On the other hand, between the sols prepared at 70°C, smaller titania particles (20 nm) and higher... 

    Pull-in parameters of cantilever type nanomechanical switches in presence of Casimir force

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Ramezani, A ; Alasty, A ; Akbari, J ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    In this paper, the influence of the Casimir force on two main parameters describing an instability point of cantilever type nanomechanical switches, which are the pull-in voltage and deflection are investigated by using a distributed parameter beam model. The nonlinear differential equation of the model is transformed into the integral form by using the Green's function of the cantilever beam. The integral equation is solved analytically by assuming an appropriate shape function for the beam deflection. The detachment length and the minimum initial gap of the cantilever type switches are given, which are the basic design parameters for NEMS switches. The pull-in parameters of micromechanical... 

    A numerical procedure for obtaining the static and pull-in deflection and voltage of capacitive microcantilever beams

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Ghaemi Oskouei, B ; Alasty, A ; Sharif University of Technology
    2006
    Abstract
    A numerical procedure is proposed for obtaining the static deflection, pull-in (PI) deflection and PI voltage of electrostatically excited capacitive microcantilever beams. The method is not time and memory consuming as Finite Element Analysis (FEA). Nonlinear ordinary differential equation of the static deflection of the beam is derived, w/wo considering the fringing field effects. The nondimensional parameters upon which PI voltage is dependent are then found. Thereafter, using the parameters and the numerical method, three closed form equations for pull-in voltage are developed. The results are in good agreement with others in literature. Copyright © 2006 by ASME