Loading...
Search for: electrostatics
0.007 seconds
Total 210 records

    Transport in droplet-hydrogel composites: response to external stimuli

    , Article Colloid and Polymer Science ; Volume 293, Issue 3 , March , 2015 , Pages 941-962 ; 0303402X (ISSN) Mohammadi, A ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    Determination of effective transport properties of droplet-hydrogel composites is essential for various applications. The transport of ions through a droplet-hydrogel composite subjected to an electric field is theoretically studied as an initial step toward quantifying the effective transport properties of droplet-hydrogel composites. A three-phase electrokinetic model is used to derive the microscale characteristics of the polyelectrolyte hydrogel, and the droplet is considered an incompressible Newtonian fluid. The droplet-hydrogel interface is modeled as a surface, which encloses the interior fluid. The surface has the thickness of zero and the electrostatic potential ζ. Standard... 

    Application of piezoelectric and functionally graded materials in designing electrostatically actuated micro switches

    , Article Proceedings of the ASME Design Engineering Technical Conference, 15 August 2010 through 18 August 2010 ; Volume 4 , August , 2010 , Pages 613-620 ; 9780791844120 (ISBN) Hosseinzadeh, A ; Ahmadian, M. T ; Design Engineering Division and Computers in Engineering Division ; Sharif University of Technology
    2010
    Abstract
    In this research, a functionally graded microbeam bonded with piezoelectric layers is analyzed under electric force. Static and dynamic instability due to the electric actuation is studied because of its importance in micro electro mechanical systems, especially in micro switches. In order to prevent pull-in instability, two piezoelectric layers are used as sensor and actuator. A current amplifier is used to supply input voltage of the actuator from the output of the sensor layer. Using Hamilton's principle and Euler-Bernoulli theory, equation of motion of the system is obtained. It is shown that the load type (distributed or concentrated) applied to the microbeam from the piezoelectric... 

    Molecular dynamics simulation and MM-PBSA calculations of sickle cell hemoglobin in dimer form with Val, Trp, or Phe at the lateral contact

    , Article Journal of Physical Organic Chemistry ; Volume 23, Issue 9 , March , 2010 , Pages 866-877 ; 08943230 (ISSN) Abroshan, H ; Akbarzadeh, H ; Parsafar, G. A ; Sharif University of Technology
    Abstract
    As the delay time and hence nuclei formation play a crucial role in the pathophysiology of sickle cell disease, MD simulation and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) calculations have been performed on three systems of hemoglobin; namely dimer of hemoglobin with valine (Hb S), tryptophan (Hbβ6W), and phenylalanine (Hbβ6F) at β6 position. The structural changes due to these aromatic substitutions are investigated. It is shown that β subunits have significant impact on the differences between a dimer and other crystal structures. Transition from a dimer to polymer for Hb S system affects the donor molecule more than that of the acceptor. In the case of donor and... 

    Electron trajectory evaluation in laser-plasma interaction for effective output beam

    , Article Chinese Physics B ; Volume 19, Issue 6 , 2010 ; 16741056 (ISSN) Zobdeh, P ; Sadighi Bonabi, R ; Afarideh, H ; Sharif University of Technology
    2010
    Abstract
    Using the ellipsoidal cavity model, the quasi-monoenergetic electron output beam in laser-plasma interaction is described. By the cavity regime the quality of electron beam is improved in comparison with those generated from other methods such as periodic plasma wave field, spheroidal cavity regime and plasma channel guided acceleration. Trajectory of electron motion is described as hyperbolic, parabolic or elliptic paths. We find that the self-generated electron bunch has a smaller energy width and more effective gain in energy spectrum. Initial condition for the ellipsoidal cavity is determined by laser-plasma parameters. The electron trajectory is influenced by its position, energy and... 

    Investigation of Casimir and Van der Waals forces for a nonlinear double-clamped beam using homotopy perturbation method

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 12, Issue PART A , 2010 , Pages 487-494 ; 9780791843857 (ISBN) Mojahedi, M ; Moeenfard, H ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    In this study, static deflection and Instability of double- clamped nanobeams actuated by electrostatic field and intermolecular force, are investigated. The model accounts for the electric force nonlinearity of the excitation and for the fringing field effect. Effects of mid-plane stretching and axial loading are considered. Galerkin's decomposition method is utilized to convert the nonlinear differential equation of motion to a nonlinear algebraic equation which is solved using the homotopy perturbation method. The effect of the design parameters such as axial load and mid-plane stretching on the static responses and pull-in instability is discussed. Results are in good agreement with... 

    Electrospun polyethersolfone nanofibrous membrane as novel platform for protein immobilization in microfluidic systems

    , Article Journal of Biomedical Materials Research - Part B Applied Biomaterials ; Volume 106, Issue 3 , April , 2018 , Pages 1108-1120 ; 15524973 (ISSN) Mahmoudifard, M ; Vossoughi, M ; Soudi, S ; Soleimani, M ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    In the present study, the feasibility of electrospun polyethersolfone (PES) nanofibrous membrane as the solid substrate for microfluidic based immunoassays to enhance the density of immobilized antibody on the surface of membrane was assessed. Conversely, the efficacy of antibody immobilization was compared by two different strategies as 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/N-Hydroxysuccinimide (NHS) coupling chemistry and hydrophobic interaction. Compared to conventional immunoassays carried out in plates or gels, microfluidic based immunoassays grant a lot of advantages such as a consumption of little samples and reagents, shorter analysis time, and higher efficiency.... 

    All-optical flip-flop composed of a single nonlinear passive microring coupled to two straight waveguides

    , Article Optics Communications ; Volume 282, Issue 3 , 2009 , Pages 427-433 ; 00304018 (ISSN) Bahrampour, A. R ; Mirzaee, M. A ; Farman, F ; Zakeri, S ; Sharif University of Technology
    2009
    Abstract
    Microrings can have different hysteresis characteristics at their different resonance frequencies. They can be used as a multi-hysteresis optical component. In this paper an optical D-flip-flop circuit composed of a single nonlinear passive microring coupled to two straight waveguide based on the Kerr effect is proposed. The proposed circuit can operate as an optical digital circuit which synchronizes input DATA with the CLOCK of the circuit. A simple analytical model for hysteresis design and the transient analysis of the proposed D-flip-flop are presented. According to our model, the switching time of the flip-flop is in the order of 10 ps. Crown Copyright © 2008  

    Amino acid ionic liquids based on imidazolium-hydroxyl functionalized cation: New insight from molecular dynamics simulations

    , Article Journal of Molecular Liquids ; Volume 279 , 2019 , Pages 51-62 ; 01677322 (ISSN) Fakhraee, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Various thermodynamic and structural properties of amino acid ionic liquids (AAILs), comprising 1-(2-Hydroxyethyl)-3-methyl imidazolium ([C 2 OHmim] + ) cation mixed with Glycinate [Gly], Serinate [Ser], Alaninate [Ala], and Prolinate [Pro] AA anions are explored using molecular dynamic (MD) simulations and quantum theory of atoms in molecules (QTAIM) analysis. In general, the simulated thermodynamic results are in good agreement with the reported experimental data. Structural dependence of vdW- and electrostatic energies of AAILs is [Pro] > [Ala] > [Ser] > [Gly] and [Gly] > [Ala] > [Pro] > [Ser], respectively. The similar trend of electrostatic energies is found for their interaction... 

    A colorimetric sensor array for detection and discrimination of biothiols based on aggregation of gold nanoparticles

    , Article Analytica Chimica Acta ; Volume 882 , July , 2015 , Pages 58-67 ; 00032670 (ISSN) Ghasemi, F ; Hormozi-Nezhad, M.R ; Mahmoudi, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Developments of sensitive, rapid, and cheap systems for identification of a wide range of biomolecules have been recognized as a critical need in the biology field. Here, we introduce a simple colorimetric sensor array for detection of biological thiols, based on aggregation of three types of surface engineered gold nanoparticles (AuNPs). The low-molecular-weight biological thiols show high affinity to the surface of AuNPs; this causes replacement of AuNPs' shells with thiol containing target molecules leading to the aggregation of the AuNPs through intermolecular electrostatic interaction or hydrogen-bonding. As a result of the predetermined aggregation, color and UV-vis spectra of AuNPs... 

    Dynamics of electrostatic interaction and electrodiffusion in a charged thin film with nanoscale physicochemical heterogeneity: Implications for low-salinity waterflooding

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 650 , 2022 ; 09277757 (ISSN) Pourakaberian, A ; Mahani, H ; Niasar, V ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The slow kinetics of wettability alteration toward a more water-wetting state by low-salinity waterflooding (LSWF) in oil-brine-rock (OBR) systems is conjectured to be pertinent to the electrokinetic phenomena in the thin brine film. We hypothesize that the nanoscale physicochemical heterogeneities such as surface roughness and surface charge heterogeneity at the rock/brine interface control further the dynamics of electrodiffusion and electrostatic disjoining pressure (Πel), thus the time-scale and the magnitude of the low salinity effect (LSE). In this regard, film-scale computational fluid dynamics (CFD) simulations were performed. The coupled Poisson-Nernst-Planck (PNP) equations were...