Loading...
Search for: electrospinning
0.007 seconds
Total 178 records

    Cellulose acetate/magnetic graphene nanofiber in enhanced human mesenchymal stem cells osteogenic differentiation under alternative current magnetic field

    , Article SPIN ; Volume 9, Issue 2 , 2019 ; 20103247 (ISSN) Hatamie, S ; Mohamadyar Toupkanlou, F ; Mirzaei, S ; Ahadian, M. M ; Hosseinzadeh, S ; Soleimani, M ; Sheu, W. J ; Wei, Z. H ; Hsieh, T. F ; Chang, W. C ; Wang, C. L ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2019
    Abstract
    The three-dimensional (3D) nano scaffold of the cellulose acetate (CA) containing graphene/cobalt nanocomposite (0.1wt.%) was fabricated via electrospinning technique, and its impact on bone regeneration was investigated. Through this aim, bone marrow mesenchymal stem cells are cultured on the CA, and graphene/cobalt (rGO/Co)/CA nanocomposite scaffold surfaces and the samples are treated under low frequency alternative magnetic field (75Hz). The scaffolds are characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermal studies (TG/DSC). The proliferation behavior of stem cells on CA, and rGO/Co/CA nano scaffolds are studied by MTT assay, show their... 

    Electrospun nanofibers

    , Article Solid-Phase Extraction ; 2019 , Pages 311-339 ; 9780128169063 (ISBN) Bagheri, H ; Rezvani, O ; Zeinali, S ; Asgari, S ; Golzari Aqda, T ; Manshaei, F ; Sharif University of Technology
    Elsevier  2019
    Abstract
    Electrostatic fiber fabrication technique has evinced more interest and attention in recent years, owing to its versatility, reliability, and potential for applications in diverse fields, particularly separation, extraction, and filtration. The sub-micro fibers are generated by employing strong electric field on polymeric solutions or melt is led to the soft nanometric mats. So far, more than 100 polymers have been Electrospun and this number is gradually increasing. Over recent decades, a remarkable variety of electrospun nanofibers as promising and authentic extracting platforms have been synthesized. They offer various advantages including high surface area-to-volume ratio and tunable... 

    Electrospun nanofibers

    , Article Solid-Phase Extraction ; 2019 , Pages 311-339 ; 9780128169063 (ISBN) Bagheri, H ; Rezvani, O ; Zeinali, S ; Asgari, S ; Aqda, T. G ; Manshaei, F ; Sharif University of Technology
    Elsevier  2019
    Abstract
    Electrostatic fiber fabrication technique has evinced more interest and attention in recent years, owing to its versatility, reliability, and potential for applications in diverse fields, particularly separation, extraction, and filtration. The sub-micro fibers are generated by employing strong electric field on polymeric solutions or melt is led to the soft nanometric mats. So far, more than 100 polymers have been Electrospun and this number is gradually increasing. Over recent decades, a remarkable variety of electrospun nanofibers as promising and authentic extracting platforms have been synthesized. They offer various advantages including high surface area-to-volume ratio and tunable... 

    Curcumin sustained release with a hybrid chitosan-silk fibroin nanofiber containing silver nanoparticles as a novel highly efficient antibacterial wound dressing

    , Article Nanomaterials ; Volume 12, Issue 19 , 2022 ; 20794991 (ISSN) Heydari Foroushani, P ; Rahmani, E ; Alemzadeh, I ; Vossoughi, M ; Pourmadadi, M ; Rahdar, A ; Díez Pascual, A. M ; Sharif University of Technology
    MDPI  2022
    Abstract
    Drug loading in electrospun nanofibers has gained a lot of attention as a novel method for direct drug release in an injury site to accelerate wound healing. The present study deals with the fabrication of silk fibroin (SF)-chitosan (CS)-silver (Ag)-curcumin (CUR) nanofibers using the electrospinning method, which facilitates the pH-responsive release of CUR, accelerates wound healing, and improves mechanical properties. Response surface methodology (RSM) was used to investigate the effect of the solution parameters on the nanofiber diameter and morphology. The nanofibers were characterized via Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron... 

    Emerging bioengineering strategies for regulating stem cell fate: Scaffold physical and biochemical cues

    , Article Tissue Engineering: Current Status and Challenges ; 2022 , Pages 125-156 ; 9780128240649 (ISBN) Sharareh Mahdavi, S ; Mashayekhan, S ; Sharif University of Technology
    Elsevier  2022
    Abstract
    Stem cell therapy has been introduced as an emerging approach for injured tissue regeneration. This chapter addresses developing regenerative medicine techniques for controlling stem cell behavior. Recent studies have been reviewed and novel approaches have been divided into four main categories: 3D bioprinting, lithography, microfluidics, and electrospinning. Moreover, the impact of applied biophysical and/or biochemical cues to the designed scaffold on controlling stem cell activity has been discussed. The potential of using stem cells for various soft and hard tissue regenerations has been explored in different bioengineered scaffolds and the applied techniques for controlling stem cell... 

    An electrospun magnetic nanocomposite for a facile micro-scaled analysis approach

    , Article Analytical Methods ; Vol. 6, issue. 15 , 2014 , Pages 5838-5846 ; ISSN: 17599660 Bagheri, H ; Roostaie, A ; Daliri, R ; Sharif University of Technology
    Abstract
    A magnetic polyurethane (PU) nanocomposite was synthesized by an electrospinning technique and applied for isolation and preconcentration of fluoxetine from aquatic and biological samples. The nanocomposite was electrospun using a PU polymer solution containing the dispersed magnetic nanoparticles. The magnetic properties of iron nanoparticles, along with the use of an electrospinning technique, led to the formation of a suitable sorbent toward isolation of fluoxetine. The magnetic PU nanofibers could be subsequently removed from the sample solution by applying a permanent magnet. The scanning electron microscopy (SEM) image of the magnetic PU nanofibers confirms that their diameters are in... 

    High flux electrospun nanofiberous membrane: Preparation by statistical approach, characterization, and microfiltration assessment

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 59 , 2016 , Pages 474-483 ; 18761070 (ISSN) Seyed Shahabadi, S. M ; Mousavi, S. A ; Bastani, D ; Sharif University of Technology
    Taiwan Institute of Chemical Engineers 
    Abstract
    Preparation, characterization and evaluation of new generation of micro-filters based on polyacrylonitrile electrospun nanofiberous membrane (ENM) were thoroughly investigated. First, quantitative relationships between average diameter, bead area density of nano-fibers and certain electrospinning parameters, i.e., concentration, voltage, spinning distance, and feed rate, were established by empirical modeling based on a central composite design. The analysis revealed that concentration, voltage and distance are the significant parameters. Also, adequacy checking indicated the appropriateness of fit for the models. Afterwards, bead-free ENMs with diameter of 100-500 nm were prepared and... 

    Synthesis of mesoporous functional hematite nanofibrous photoanodes by electrospinning

    , Article Polymers for Advanced Technologies ; Volume 27, Issue 3 , 2016 , Pages 358-365 ; 10427147 (ISSN) Saveh Shemshaki, N ; Latifi, M ; Bagherzadeh, R ; Malekshahi Byranvand, M ; Naseri, N ; Dabirian, A ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    Iron(III) oxide (hematite, Fe2O3) nanofibers, as visible light-induced photoanode for water oxidation reaction of a water splitting process, were fabricated through electrospinning method followed by calcination treatment. The prepared samples were characterized with scanning electron microscopy, and three-electrode galvanostat/potentiostat for evaluating their photoelectrochemical (PEC) properties. The diameter of the as-spun fibers is about 300nm, and calcinated fibers have diameter less than 110nm with mesoporous structure. Optimized multilayered electrospun α-Fe2O3 nanostructure mats showed photocurrent density of 0.53mA/cm2 under dark and visible illumination conditions at voltage 1.23V... 

    Different types of electrospun nanofibers and their effect on microfluidic-based immunoassay

    , Article Polymers for Advanced Technologies ; Volume 30, Issue 4 , 2019 , Pages 973-982 ; 10427147 (ISSN) Mahmoudifard, M ; Vossoughi, M ; Soleimani, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    Protein capturing on polymeric substrate of microfluidic devices is a key factor for the fabrication of immunoassay with high sensitivity. In this work, simple and versatile technique of electrospinning was used to produce electrospun nanofibrous membranes (e.NFMs) with high surface area as a substrate for microfluidic-based immunoassay to increase sensitivity. It was found that the simultaneous use of e.NFM and 1-Ethylethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-Hydroxysuccinimide hydroxysuccinimide as coupling agent has synergic effect on antigen immobilization onto the microchannels. It was found that the oxygen plasma technique for the creation of oxygen containing functional group... 

    New efficient inorganic-organic nanofibers electrospun membrane for fluorescence detection and removal of mercury (II) ions

    , Article Journal of Molecular Structure ; Volume 1179 , 2019 , Pages 242-251 ; 00222860 (ISSN) Tahvili, A ; Poush, M. K ; Ahmed, M ; Parsaee, Z ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, a new inorganic-organic nano fibrous membrane (PTSNFM) has been fabricated via immobilization of carbazol-based Schiff base (S) into a polyvinyl alcohol (PVA) - tetraethyl orthosilicate (TEOS) polymeric support using the electrospinning method. PTSNFM has been used as an optode to detect and remove of mercury (II) ions. The characterization of PTSNFM has been fully carried out using different methods including FE-SEM, TEM, AFM, viscosity, surface tension and conductivity. FE-SEM and FT-IR analysis demonstrated the binding of Hg (II) to the PTSNFM via chelating of Hg (II) to the Schiff base ligand. PTSNFM can detect Hg (II) in the dynamic range of 0.020–0.50 ng/mL, with the LOD... 

    Synthesis and morphology optimization of electrospun SiBNC nanofibers

    , Article Ceramics International ; Volume 46, Issue 5 , 2020 , Pages 6052-6059 Asadi-Pakdel, K ; Mehdinavaz Aghdam, R ; Shahedi Asl, M ; Faghihi Sani, M. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    SiBNC nanofibers were synthesized through the polymeric route by a one-pot synthesis approach. DMTA (dichloroboryl methyl trichlorosilyl amine) polymer was selected as pre-ceramic for SiBNC, which was shaped into nanofibers by electrospinning. Then, the nanofibers were cured in an inert atmosphere in order to obtain the final ceramic. By changing the curing atmosphere, the compound of final ceramic has been manipulated. In addition, the ceramic yield of DMTA as a preceramic was increased in the nitrogen atmosphere. The effects of applied voltage, solution concentration, and feeding rate on the morphology of final electrospun ceramic nanofibers were also investigated. Final ceramic remains... 

    Gamma irradiated electro-conductive polylactic acid/polyaniline nanofibers

    , Article Synthetic Metals ; Volume 259 , 2020 Ashraf, S. S ; Frounchi, M ; Dadbin, S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, polyaniline nanoparticles (PANI NPs) in emeraldine base (EB) form were prepared by a modified method and characterized by FTIR and UV–vis spectroscopies. The average size of the nanoparticles was 140 nm measured by DLS method. The nanoparticles were embedded into polylactic acid (PLA) nanofibers prepared by electrospinning method. It was found that inclusion of PANI NPs in PLA resulted in reduced diameter of the fibers during the electrospinning process. Also, the surface of nanofibers appeared smooth in FE-SEM images without formation of beads. Improvement in mechanical and electrical properties of PLA/PANI nanofibers over the neat PLA nanofibers implied a good dispersion of... 

    Highly conductive self-electrical stimuli core-shell conduit based on PVDF-chitosan–gelatin filled with in-situ gellan gum as a possible candidate for nerve regeneration: a rheological, electrical, and structural study

    , Article Applied Nanoscience (Switzerland) ; Volume 11, Issue 8 , 2021 , Pages 2199-2213 ; 21905509 (ISSN) Mohseni, M ; Ramazani Saadatabadi, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In the context of peripheral nerve injuries treatment, self-electrical stimuli nerve guidance conduit is a promising technique. To fabricate such structures, PVDF-chitosan–gelatin was considered for the outside walls of conduit and gellan gum containing conductive polyaniline-graphene (PAG) nanocomposite particles in the middle. PVDF-chitosan–gelatin nanofibers were prepared using the dual-electrospinning method and highly conductive binary-doped polyaniline-graphene was synthesized by chemical oxidative polymerization in the presence of aniline and sodium dodecyl sulfate. The morphology and chemical structure of nanofibers and PAG were characterized using SEM and FTIR analyses. The... 

    Synthesis and Characterization of Electrospun N/S Doped ZnO and Investigation of their Applications in Dye Degradation

    , M.Sc. Thesis Sharif University of Technology Shirvani Shiri, Tayyebe (Author) ; Poujavadi, Ali (Supervisor)
    Abstract
    In this research, the synthesis of the electrospum nano fiber doped zinc oxide and its photocatalyst usage was investigated. The band gap of the zinc oxide in the area of UV leads to deactivation of this material at the visible light. With due the attention to sunny weather in Iran and the fact that about 50 percentage of sunlight is visible light, producing and usage of catalyst materials actived at visible light is economical. Doping is one of the ways of activating ZnO at visible light, so in this research thiourea is used as the source of ZnO doping. The results of the expriments done at visible light and also spectrums of DRS, XPS and XRD prove that the doping is happened. Also, in this... 

    Investigation Physicochemical, Mechanical and Biological Properties of Chitosan-Graphene Oxide Electrospun Nanocomposite with Drug Release Capability as a Temporary Skin Graft

    , Ph.D. Dissertation Sharif University of Technology Mahmoudi, Nafiseh (Author) ; Simchi, Abdolreza (Supervisor)
    Abstract
    In recent years, temporary skin grafts based on natural biopolymers modified with carbon nanostructures has received considerable for wound healing applications. In this study, Nanofibrous structures that mimic the native extracellular matrix and promote cell adhesion have attracted considerable interest for biomedical applications. Chitosan-polyvinylpyrrolidone (CS/PVP) films containing graphene oxide (GO) nanosheets (~1 nm thickness and micrometer length) were prepared by solvent casting methods. Experimental results showed that PVP concentration had a critical role on the water vapor permeability, transparency, hydrophilicity and thermal stability of the nanocomposite films. Antibacterial... 

    Processing and Investigation of the Properties of Chitosan/Celloluse Nanocomposite Wound Dressing Fabricated by Electrospinning Method

    , M.Sc. Thesis Sharif University of Technology Faraji Safiloo, Negar (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    It is a common method to use some proper materials such as honey, herbal fibers, and minerals for covering the wounds as an effective treatment. Nowadays biopolymers and new methods of nanofiber production to build a structure similar to the natural extracellular matrix (ECM) like electrospinning are used to reduce the time of restoration and prevent from the effects of wounds such as bedsores, diabetic ulcers, and severe burns. For effective design of a wound dressing, wound feature, recovery time, physical, mechanical, and biological properties should be considered in order to best as possible heal the bound. In this research, cellulose nanocrystals with average aspect ratio of 11.8 and... 

    Preparation of Nanocomposites based on Poly (Lactic Acid)/Nano-Diamond

    , M.Sc. Thesis Sharif University of Technology Esfandiari, Atene (Author) ; Forounchi, Masoud (Supervisor)
    Abstract
    Nanodiamond (ND)/polylactic acid (PLA) nanocomposites have the potential for biomedical applications and bone tissue engineering. In this research, nanodiamond/poly lactic acid nanocomposites were prepared by mechanical mixing solution method and applying ultrasonication. Also, PLA-based nanofiber scaffold reinforced by nanodiamond were prepared by electrospinning methods. To find the optimum value of parameters to prepare this nanocomposite sample, the effect of nanofiller concentration, mixing rate and duration, the role of solute and ultrasonication, and solvent evaporation conditions were investigated and then it compared to the neat polylactic acid sample. By means of Fourier transform... 

    Experimental Study of Various Parameters of Electrospinning on the Morphology of Micro and Nano Fibers

    , M.Sc. Thesis Sharif University of Technology Abdollahzadeh, Iman (Author) ; Iraji zad, Azam (Supervisor)
    Abstract
    Electrospinning is a method for producing of micro and nanometer polymeric fibers. Nowadays, electrospun fibers have been demanded a lot because of various applications of fibers in optical industries, tissue engineering, and chemical and biological sensors. Producing of more complicated shape of fibers by using two new methods called Electrical Bending and Mechanical Buckling are interested in this field. The aim of this thesis is to prepare such fibers and study the effective parameters on the shapes of them. Fibers are collected on the aluminum and Fluorine-doped tin oxide (FTO) glass. Then they were observed by optical microscope. In the Electrical Bending method, we used PEO: PAMPS and... 

    Preparation of Healing Pad with PVA/Chitosan/Nano Silice Nanocomposite using Electrospining

    , M.Sc. Thesis Sharif University of Technology Khorshidiyh, Elham (Author) ; Ramazani Saeedatabad, Ahmad (Supervisor)
    Abstract
    Electrospinning process has been widely used to produce nanofibers from polymer blends. Poly(vinyl alcohol) (PVA) and chitosan (CS) have numerous biomedical applications such as wound healing and tissue engineering. Nanofibers of CS/PVA have been prepared by many works, however, a complete physicochemical and mechanical characterization as well as cell behavior has not been reported. In this study, Non-toxic, biodegradable, and biocompatible chitosan/poly(vinyl alcohol)(PVA)/nano silica nanofibers were prepared by electrospinning. The properties of the nanofibers at various blend ratios were investigated by differential scanning calorimetry (DSC), Fourier transform infrared (FTIR)... 

    Construction of Scaffold by Electrospinning Method for Use in Skin Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Heidari Forushani, Parisa (Author) ; Alemzadeh, Iran (Supervisor) ; Vosoughi, Manouchehr (Supervisor)
    Abstract
    Making artificial skin and skin alternatives is one of the most important areas in tissue engineering. Although much progress has been made so far, there is still no definitive cure for second- and third-degree burns. To create new tissue in the body, a suitable substrate for cells is needed, which is called scaffolding, and an ideal scaffold in tissue engineering should mimic the dimensions of extracellular matrix, and nanofibers seem to be the best option for this purpose. Among the methods of manufacturing of nanofibers, electrospun is very easy and accurate method. In previous studies, many natural and synthetic polymers such as chitosan, alginate, collagen, polyathylene oxide, etc....