Loading...
Search for: eigenvalues-and-eigenfunctions
0.009 seconds
Total 205 records

    Sensitivity-based generators redispatch to improve electromechanical mode damping considering transmission lines resistance

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 491-496 ; 9781728115085 (ISBN) Setareh, M ; Parniani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This paper proposes a novel formula to calculate sensitivities of electromechanical modes to generators active power changes. Quadratic eigenvalue problem is applied to construct the framework of the proposed formula. Sensitivity factors are calculated using power system model parameters and power flow variables, which can be either obtained via state estimation or measured directly by phasor measurement units. The 39-bus New England power system is used to verify performance of the proposed method  

    Investigation of the effect of turbulence intensity and nozzle exit boundary layer thickness on stability pattern of subsonic jet

    , Article Mechanics and Industry ; Volume 20, Issue 1 , 2019 ; 22577777 (ISSN) Gohardehi, S ; Arablu, S ; Afshin, H ; Farhanieh, B ; Sharif University of Technology
    EDP Sciences  2019
    Abstract
    In this study, factors affecting the noise generation by instability waves in a subsonic jet with acoustic Mach number of 0.5 are investigated using linear stability analysis. The base flow required for instability analysis is obtained by modeling the jet stream based on the k-ϵ turbulence model and using the empirical coefficients suggested by Thies and Tam [1]. The resulting base flow profiles are used to solve the linear instability equation, which governs the pressure perturbation for obtaining the eigenvalues and eigenfunctions. The results of linear instability analysis for phase and amplitude of pressure fluctuations are compared against the existing experimental data, which... 

    Investigation of the effect of turbulence intensity and nozzle exit boundary layer thickness on stability pattern of subsonic jet

    , Article Mechanics and Industry ; Volume 20, Issue 1 , 2019 ; 22577777 (ISSN) Gohardehi, S ; Arablu, S ; Afshin, H ; Farhanieh, B ; Sharif University of Technology
    EDP Sciences  2019
    Abstract
    In this study, factors affecting the noise generation by instability waves in a subsonic jet with acoustic Mach number of 0.5 are investigated using linear stability analysis. The base flow required for instability analysis is obtained by modeling the jet stream based on the k-ϵ turbulence model and using the empirical coefficients suggested by Thies and Tam [1]. The resulting base flow profiles are used to solve the linear instability equation, which governs the pressure perturbation for obtaining the eigenvalues and eigenfunctions. The results of linear instability analysis for phase and amplitude of pressure fluctuations are compared against the existing experimental data, which... 

    Some lower bounds for the energy of graphs

    , Article Linear Algebra and Its Applications ; Volume 591 , 2020 , Pages 205-214 Akbari, S ; Ghodrati, A. H ; Hosseinzadeh, M. A ; Sharif University of Technology
    Elsevier Inc  2020
    Abstract
    The singular values of a matrix A are defined as the square roots of the eigenvalues of A⁎A, and the energy of A denoted by E(A) is the sum of its singular values. The energy of a graph G, E(G), is defined as the sum of absolute values of the eigenvalues of its adjacency matrix. In this paper, we prove that if A is a Hermitian matrix with the block form A=(BDD⁎C), then E(A)≥2E(D). Also, we show that if G is a graph and H is a spanning subgraph of G such that E(H) is an edge cut of G, then E(H)≤E(G), i.e., adding any number of edges to each part of a bipartite graph does not decrease its energy. Let G be a connected graph of order n and size m with the adjacency matrix A. It is well-known... 

    Vibrations and stability analysis of double current-carrying strips interacting with magnetic field

    , Article Acta Mechanica ; 2020 Hosseinian, A. R ; Firouz Abadi, R. D ; Sharif University of Technology
    Springer  2020
    Abstract
    Interactive vibrations and buckling of double current-carrying strips (DCCS) are investigated in this study. Considering the rotational and transverse deformation of the strip, four coupled equations of motion are obtained using Hamilton’s principle. Using the Galerkin method, mass and stiffness matrices are extracted and the stability of the system is determined by solving the eigenvalue problem. Effects of pretension and elevated temperature on the stability of DCCS are studied for three types of materials and various arrangements. Finally, the effect of horizontal or vertical distance between strips on the critical current value is investigated. According to the results, the effects of... 

    A screw dislocation near a damaged arbitrary inhomogeneity–matrix interface

    , Article International Journal of Damage Mechanics ; Volume 29, Issue 2 , 2020 , Pages 272-296 Kamali, M. T ; Shodja, H. M ; Masoudvaziri, N ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    In the literature, the analytical solutions concerned with the interaction between screw dislocation and surfaces/interfaces have been mainly limited to simple geometries and perfect interfaces. The focus of the current work is to provide an approach based on a rigorous semi-analytical theory suitable for treatment of such surfaces/interfaces that concurrently have complex geometry and imperfect bonding. The proposed approach captures the singularity of the elastic fields exactly. A vast variety of the pertinent interaction problems such as dislocation near a multi-inhomogeneity with arbitrary geometry bonded imperfectly to a matrix, dislocation near the free boundaries of a finite elastic... 

    Hybrid anisotropic pentamode mechanical metamaterial produced by additive manufacturing technique

    , Article Applied Physics Letters ; Volume 117, Issue 6 , 2020 Mohammadi, K ; Movahhedy, M. R ; Shishkovsky, I ; Hedayati, R ; Sharif University of Technology
    American Institute of Physics Inc  2020
    Abstract
    Pentamode metamaterials are a type of extremal designer metamaterials, which are able to demonstrate extremely high rigidity in one direction and extremely high compliance in other directions. Pentamodes can, therefore, be considered as building blocks of exotic materials with any arbitrarily selected thermodynamically admissible elasticity tensor. The pentamode lattices can then be envisioned to be combined to construct intermediate extremal materials, such as quadramodes, trimodes, and bimodes. In this study, we constructed several primary types of anisotropic pentamode lattices (with midpoint positioning of 10%, 15%, 20%, 25%, 30%, 35%, and 42% of the main unit cell diagonal) and then... 

    Stabilization of nonlinear dynamic systems over limited capacity communication channels

    , Article IEEE Transactions on Automatic Control ; Volume 65, Issue 8 , 2020 , Pages 3655-3662 Sanjaroon, V ; Farhadi, A ; Seyed Motahari, A ; Hosain Khalaj, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This article addresses the stabilization of noiseless nonlinear dynamic systems over limited capacity communication channels. It is shown that the stability of nonlinear dynamic systems over memory-less communication channels implies an inequality condition between the Shannon channel capacity and the summation of the positive equilibrium Lyapunov exponents of the dynamic system or, equivalently, the logarithms of the magnitude of the unstable eigenvalues of system Jacobian. Furthermore, we propose an encoder, decoder, and a controller to prove that scalar nonlinear dynamic systems are stabilizable under the aforementioned inequality condition over the digital noiseless and the packet... 

    Using piezoelectric materials to control the dynamic response of a thin rectangular plate under moving mass

    , Article 11th East Asia-Pacific Conference on Structural Engineering and Construction, EASEC-11, Taipei, 19 November 2008 through 21 November 2008 ; January , 2008 Nikkhoo, A ; Rofooei, F. R ; Sharif University of Technology
    2008
    Abstract
    The governing differential equation of motion for an undamped thin rectangular plate with a number of bonded piezoelectric patches on its surface, and arbitrary boundary conditions are derived using Hamilton's principle. A moving mass traveling on an arbitrary trajectory acts as an external excitation for the system. The effect of moving mass inertia is considered using all the out-of-plane translational acceleration components. The method of eigenfunction expansion is used to decouple the equation of motion into a number of coupled ordinary differential equations. A classical closed loop optimal control algorithm is employed to suppress the dynamic response of the system by determining the... 

    MR artifact reduction in the simultaneous acquisition of EEG and fMRI of epileptic patients

    , Article 16th European Signal Processing Conference, EUSIPCO 2008, Lausanne, 25 August 2008 through 29 August 2008 ; 2008 ; 22195491 (ISSN) Amini, L ; Sameni, R ; Jutten, C ; Hossein Zadeh, G. A ; Soltanian Zadeh, H ; Sharif University of Technology
    2008
    Abstract
    Integrating high spatial resolution of functional magnetic resonance imaging (fMRI) and high temporal resolution of electroencephalogram (EEG) is promising in simultaneous EEG and fMRI analysis, especially for epileptic patients. The EEG recorded inside an MR scanner is interfered with MR artifacts. In this article, we propose new artifact reduction approaches and compare them with the conventional artifact reduction methods. Our proposed approaches are based on generalized eigenvalue decomposition (GEVD) and median filtering. The proposed methods are applied on experimental simultaneous EEG and fMRI recordings of an epileptic patient. The results show significant improvement over... 

    Application of the homotopy perturbation method to linear and nonlinear fourth-order boundary value problems

    , Article Physica Scripta ; Volume 77, Issue 5 , 2008 ; 00318949 (ISSN) Roohi, E ; Rasi Marzabadi, F ; Farjami, Y ; Sharif University of Technology
    2008
    Abstract
    In this study, we applied the homotopy perturbation (HP) method for solving linear and nonlinear fourth-order boundary value problems. The analytical results of the boundary value problems have been obtained in terms of a convergent series with easily computable components. Comparisons between the results of the HP method and the analytical solution showed that this method gives very precise results with a few terms. In the implied HP method, some unknown parameters in the initial guess are introduced, which are identified after applying boundary conditions. This improvement results in higher accuracy. © 2008 The Royal Swedish Academy of Sciences  

    First order perturbation solution for axial vibration of tension leg platforms

    , Article Scientia Iranica ; Volume 14, Issue 5 , 2007 , Pages 414-423 ; 10263098 (ISSN) Golafshani, A. A ; Tabeshpour, M. R ; Seif, M. S ; Sharif University of Technology
    Sharif University of Technology  2007
    Abstract
    The dynamic response of the leg (tether) of a Tension Leg Platform (TLP), subjected to axial load at the top of the leg, is presented. The structural model is very simple, but several complicated factors, such as foundation effect, buoyancy and simulated ocean wave load, are considered. As an application, the effect of added mass fluctuation on the dynamic response of the leg subjected to such a load is presented. This effect is important in the fatigue life study of tethers. A first order perturbation method is used, in order to formulate and solve the problem. The differential equation is solved by means of non-harmonic Fourier expansion, in terms of eigenfunctions obtained from a... 

    Ellipsoidal domains: Piecewise nonuniform and impotent eigenstrain fields

    , Article Journal of Elasticity ; Volume 86, Issue 1 , 2007 , Pages 1-18 ; 03743535 (ISSN) Shodja, H. M ; Shokrolahi Zadeh, B ; Sharif University of Technology
    2007
    Abstract
    In association with multi-inhomogeneity problems, a special class of eigenstrains is discovered to give rise to disturbance stresses of interesting nature. Some previously unnoticed properties of Eshelby's tensors prove useful in this accomplishment. Consider the set of nested similar ellipsoidal domains {Ω1, Ω2,⋯,ΩN+1}, which are embedded in an infinite isotropic medium. Suppose that Ωt= {x|x ∈ ℝ3, ∑p=13 x p2/ap2 ≤ ξt 2}, which 0 ≤ ξ1 < ξ2 < ⋯ < ξN+1 and ξ t a p , p=1,2,3 are the principal half axes of Ω t . Suppose, the distribution of eigenstrain, ε ij *(x) over the regions Γ t =Ω t+1-Ω t , t=1,2,⋯,N can be expressed as εij*(x)={f ijkl⋯mt(∑p=13 x p2/ap2)xkx l⋯xm, x∈ Γ, 0, x ∈ Ω1∪(ℝ3 -... 

    Ag Raman modes of RBCO (R = Gd, Pr) by density functional theory approach

    , Article European Physical Journal B ; Volume 51, Issue 2 , 2006 , Pages 161-165 ; 14346028 (ISSN) Khosroabadi, H ; Tavana, A ; Akhavan, M ; Sharif University of Technology
    2006
    Abstract
    Ab initio total energy calculations have been performed for superconducting GdBa2Cu3O7 and insulating PrBa 2Cu3O7 using the full-potential linear augmented plane-wave method in the local density approximation (LDA) and generalized gradient approximation (GGA). The comparison of the calculated unit cell volume and lattice parameters with the experimental data indicates the improvement of these parameters in the GGA relative to LDA. LDA and GGA give the equilibrium unit cell volume about 6% smaller and 1.25% larger than the experimental data, respectively for both systems. Thus frozen phonon calculations have been performed to determine the eigenvalues and eigenvectors of the k=0 Ag modes of... 

    Vibrations and stability analysis of double current-carrying strips interacting with magnetic field

    , Article Acta Mechanica ; Volume 232, Issue 1 , 2021 , Pages 229-245 ; 00015970 (ISSN) Hosseinian, A. R ; Firouz Abadi, R. D ; Sharif University of Technology
    Springer  2021
    Abstract
    Interactive vibrations and buckling of double current-carrying strips (DCCS) are investigated in this study. Considering the rotational and transverse deformation of the strip, four coupled equations of motion are obtained using Hamilton’s principle. Using the Galerkin method, mass and stiffness matrices are extracted and the stability of the system is determined by solving the eigenvalue problem. Effects of pretension and elevated temperature on the stability of DCCS are studied for three types of materials and various arrangements. Finally, the effect of horizontal or vertical distance between strips on the critical current value is investigated. According to the results, the effects of... 

    Stability analysis for design improvement of bio-inspired flapping wings by energy method

    , Article Aerospace Science and Technology ; Volume 111 , 2021 ; 12709638 (ISSN) Kamankesh, Z ; Banazadeh, A ; Sharif University of Technology
    Elsevier Masson s.r.l  2021
    Abstract
    This study attempts to reach a broad understanding of the stability properties of nonlinear time-periodic flapping wing structures. Two bio-system models, Hummingbird (6DOF) and Hawkmoth (3DOF) are developed for this purpose. Initial analysis on the Hummingbird model, which is based on the Floquet theory, kinetic energy integration, and phase portrait technique, indicates lack of stability in hover flight. Kinetic energy integration is carried out on the extended model of the Hawkmoth to find the domain of attraction and increase the level of stability by varying the design parameters. Here, the hinge location of the wing, flapping amplitude, flapping frequency, and mean angle of attack are... 

    Effect of axially graded constraining layer on the free vibration properties of three layered sandwich beams with magnetorheological fluid core

    , Article Composite Structures ; Volume 255 , 2021 ; 02638223 (ISSN) Omidi Soroor, A ; Asgari, M ; Haddadpour, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The free linear vibration of an adaptive sandwich beam consisting of a frequency and field-dependent magnetorheological fluid core and an axially functionally graded constraining layer is investigated. The Euler-Bernoulli and Timoshenko beam theories are utilized for defining the longitudinal and lateral deformation of the sandwich beam. The Rayleigh-Ritz method is used to derive the frequency-dependent eigenvalue problem through the kinetic and strain energy expressions of the sandwich beam. In order to deal with the frequency dependency of the core, the approached complex eigenmodes method is implemented. The validity of the formulation and solution method is confirmed through comparison... 

    Eigenvectors of deformed wigner random matrices

    , Article IEEE Transactions on Information Theory ; Volume 67, Issue 2 , 2021 , Pages 1069-1079 ; 00189448 (ISSN) Haddadi, F ; Amini, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    We investigate eigenvectors of rank-one deformations of random matrices boldsymbol B = boldsymbol A + theta boldsymbol {uu}{} in which boldsymbol A in mathbb R{N times N} is a Wigner real symmetric random matrix, theta in mathbb R{+} , and boldsymbol u is uniformly distributed on the unit sphere. It is well known that for theta > 1 the eigenvector associated with the largest eigenvalue of boldsymbol B closely estimates boldsymbol u asymptotically, while for theta < 1 the eigenvectors of boldsymbol B are uninformative about boldsymbol u. We examine mathcal O({1}/{N}) correlation of eigenvectors with boldsymbol u before phase transition and show that eigenvectors with larger eigenvalue exhibit... 

    Linearization error in synchronization of Kuramoto oscillators

    , Article Applied Mathematics and Computation ; Volume 411 , December , 2021 ; 00963003 (ISSN) Hossein Ghorban, S ; Baharifard, F ; Hesaam, B ; Zarei, M ; Sarbazi Azad, H ; Sharif University of Technology
    Elsevier Inc  2021
    Abstract
    Synchronization among a set of networked nodes has attracted much attention in different fields. This paper thoroughly investigates linear formulation of the Kuramoto model, with and without frustration, for an arbitrarily weighted undirected network where all nodes may have different intrinsic frequencies. We develop a mathematical framework to estimate errors of the linear approximation for globally and locally coupled networks. We mathematically prove that the eigenvector corresponding to the largest eigenvalue of the network's Laplacian matrix is enough for examining synchrony alignment and that the functionality of this vector depends on the corresponding eigenvalue. Moreover, we prove... 

    Response of a suspended cable to narrow-band random excitation with peaked P.S.D

    , Article Mathematical and Computer Modelling ; Volume 41, Issue 11-12 , 2005 , Pages 1203-1212 ; 08957177 (ISSN) Kargarnovin, M. H ; Mehri, B ; Younesian, D ; Sharif University of Technology
    2005
    Abstract
    The response of a suspended cables subjected to narrow-band random excitations with two types of peaked P.S.D. is formulated and analyzed. Banach fixed-point theorem is used for eigenfunction analysis of the differential-integral equations of motion for the first time in this paper. Fredholm approach also is used in the free vibration analysis of the suspended cable and then using Galerkin mode approximation method, power spectral density, and root mean square of the response are computed for two practical types of excitation. All of the calculated results converted to dimensionless quantities make their usage easier in vibration analysis of some practical cases such as vibration of moving...