Loading...
Search for: dna
0.015 seconds
Total 173 records

    Calculation of Quantum Transition Probabilities between Codons and Concept of Biological Information

    , Ph.D. Dissertation Sharif University of Technology Ghasemi, Fatemeh (Author) ; Shafiee, Afshin (Supervisor)
    Abstract
    It has been about a century since the introduction of the theory of quantum mechanics. This theory is a branch of physics that describes the behavior of nature in very small scales and microscopic systems . Since no quantum system is entirely isolated from its surroundings , it is necessary to study their interactions with the environment to understand them accurately. The theory of open quantum systems provides the theoretical and conceptual framework needed to consider these interactions. Then using the appropriate quantum operations , the evolution of the combined system can be investigated. Moreover , considering the environmental effects, some quantum features such as dissipation... 

    Design of a Microfluidic Digital Droplet PCR

    , M.Sc. Thesis Sharif University of Technology Abedini, Ali (Author) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    Polymerase chain reaction, abbreviated as PCR, is a method of amplifying the number of copies of a desired DNA sequence through special protocols. The rapid advance of microfluidic devices and the emerging concept of digital microfluidics has resulted into the development of digital droplet PCR (ddPCR) systems with their significant uses in the detection of rare mutations, cancer diagnosis, and surveillance. A large number of micron-sized droplets are required to perform ddPCR. in this study, To investigate the gradient of confinements induced droplet self-breakup mechanism, we carried out the computational fluid dynamics (CFD) simulations for the two-phase flow using a commercial software... 

    DNA Classification Using Optical Processing based on Alignment-free Methods

    , M.Sc. Thesis Sharif University of Technology Kalhor, Reza (Author) ; Koohi, Somayyeh (Supervisor)
    Abstract
    In this research, an optical processing method for DNA classification is presented in order to overcome the problems in the previous methods. With improving in the operational capacity of the sequencing process, which has increased the number of genomes, comparing sequences with a complete database of genomes is a serious challenge to computational methods. Most current classification programs suffer from either slow classification speeds, large memory requirements, or both. To achieve high speed and accuracy at the same time, we suggest using optical processing methods. The performance of electronic processing-based computing, especially in the case of large data processing, is usually... 

    Multi- and Single-cellular Encapsulation within Microchannels for Effective Cell Lysis and DNA Extraction and Purification

    , M.Sc. Thesis Sharif University of Technology Hassani Gangaraj, Mojtaba (Author) ; Shamloo, Amir (Supervisor)
    Abstract
    In this study a droplet-based microfluidic system is desighned and fabricated to effectiverly lyse MCF7 cells and extract and purify their DNAs. The main purpose of this study is to transfer all the steps from macro scale to a microfluidic system containing a fluidic chip. This system is a semi automatic system and every part of the lysis and purification process is performed in one step. The first step is to encapsulate single cells and multi cells inside the droplets. By controlling the concentration of the cell solution, the number of encapsulated cells inside the droplet is efficiently and easily controlled and the cells were encapsulated as single cells and as multi cells inside the... 

    Study, Optimization and Construction of a Microfluidic Gene Amplification Device by Using Thin Film Layer Method

    , M.Sc. Thesis Sharif University of Technology Eslami, Sara Sadat (Author) ; Vosoughi, Manouchehr (Supervisor) ; Alemzadeh, Iran (Co-Supervisor) ; Shamloo, Amir (Co-Supervisor)
    Abstract
    Polymerase Chain Reaction (PCR) is a process in which a special piece of a gene is amplified millions of times over a short period. This method has been of paramount importance in different fields of research and has been applied for different applications. PCR requires thermal cycling, or repeated temperature changes between two or three discrete temperatures to amplify specific nucleic acid target sequences. To achieve such thermal cycling, conventional bench-top thermal cyclers generally use a metal heating block powered by Peltier elements or benefit from forced convection heat transfer. Due to the fact that these methods are time consuming, it seems that design and fabrication of a fast... 

    Design and Fabrication of Microfluidic System for Cell Lysis and DNA Purification

    , M.Sc. Thesis Sharif University of Technology Jalilvand, Elahe (Author) ; Shamloo, Amir (Supervisor) ; Hosseini, Vahid (Supervisor)
    Abstract
    Nowadays, intracellular studies have been widely developed in biological applications. Intracellular analysis requires direct experiments on cells such as cell separation, purification, lysis and DNA extraction. The process of cell lysis and the resulting DNA purification is a crucial step in diagnostic processes. Since, the basis of many genetic studies is the information existed in double-stranded DNA structures.In this project, a microfluidic system is presented which performs integrated chemical cell lysis and DNA extraction. The cell used in this study is L-929. In order to increase cell lysis, the serpentine micromixer in combination with internal and external barriers at the beginning... 

    Analysis of DNA Methylation in Single-cell Resolution Using Algorithmic Methods and Deep Neural Networks

    , M.Sc. Thesis Sharif University of Technology Rasti Ghamsari, Ozra (Author) ; Sharifi Zarchi, Ali (Supervisor)
    Abstract
    DNA methylation in one of the most important epigenetic variations, which causes significant variations in gene expressions of mammalians. Our current knowledge about DNA methylation is based on measurments from samples of bulk data which cause ambiguity in intracellular differences and analysis of rare cell samples. For this reason, the ability to measure DNA methylation in single-cells has the potential to play an important role in understanding many biological processes including embryonic developement, disease progression including cancer, aging, chromosome instability, X chromosome inactivation, cell differentiation and genes regulation. Recent technological advances have enabled... 

    Design and Simulation of CMOS Based Magnetic Sensor for Biosensing Applications

    , M.Sc. Thesis Sharif University of Technology Mafi, Alireza (Author) ; Akbari, Mahmood (Supervisor) ; Fotowat-Ahmady, Ali (Supervisor)
    Abstract
    This paper presents a scalable and ultrasensitive magnetic biosensing scheme based on on-chip LC resonance frequency-shifting. The sensor transducer gain is demonstrated as being location-dependent on the sensing surface and proportional to the local polarization magnetic field strength |B|2 generated by the sensing inductor. To improve the gain uniformity, a periodic coil is proposed as a substitution for the standard process coil. As an implementation example, the circuit is designed in a 65nm CMOS process. The spatially uniform sensor gain of the array is verified by COMSOL simulations. Overall, the presented sensor demonstrates an improvement in the uniformity of the inductor’s magnetic... 

    Modeling Two-Dimensional Face from DNA Using the Face Embedding Approach in Deep Learning

    , M.Sc. Thesis Sharif University of Technology Mirzaei, Mohammad Amin (Author) ; Hossein Khalaj, Babak (Supervisor)
    Abstract
    the purpose of this research is to construct the facial image of a person from corresponding DNA. In this problem, we have a set of DNAs and facial images and we want to find the relation between the DNA and the features of facial images.using this relation we can find the facial Image of a person using the DNA. for this purpose we should first extract the features of faces that have the most variation among the population. by studying the feature extraction methods in this field, we borrow the deep neural network method that is used in face recognition fields.we found significant relations between DNA and extracted features from this network. finally using this relation we can predict the... 

    Design and Fabrication of Centrifugal Microfluidic Disc for Cell Lysis and DNA Extraction

    , M.Sc. Thesis Sharif University of Technology Jalalian, Pourya (Author) ; Saadatmand, Maryam (Supervisor) ; Garshasbi, Masoud (Co-Supervisor)
    Abstract
    Centrifugal microfluidic systems due to their unique properties, including the ease of sample transfer, high controllability, the need for samples and reagents in a small volume scale, the possibility of embedding a complete laboratory and modeling a variety of processes on a disk, they have great potential to be used in the field of point of care diagnosis. Such devices can perform several different processes simultaneously and continuously by using inertial and pneumatic forces as well as a complex network of microchannels. The purpose of this research is to design and build a centrifugal microfluidic disc for lysing amniotic stem cells, followed by DNA extraction, in order to detect fetal... 

    Motif Finding Application Using Edit Distance Approuch

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Farzin (Author) ; Koohi, Somayyeh (Supervisor)
    Abstract
    Motif finding problem in biology is a search for repeated patterns to reveal information about gene expression, one of the most complex subsystems in genomics. ChIP-seq technology abled researchers to investigate location of protein-DNA interactions but analyzing downstream results of such experiments to find actual regulatory signals in genome is challenging. For many years, applications of motif finding had models based on limiting assumption as an exchange for lower computational complexity. Results: AKAGI program is build upon upgraded methods and new general models to investigate statistical and experimental evidences for accurately finding significant patterns among biological... 

    Prediction of DNA/RNA Sequence Binding Site to Protein with the Ability to Implement on GPU

    , M.Sc. Thesis Sharif University of Technology Fatemeh Tabatabaei (Author) ; Koohi, Sommaye (Supervisor)
    Abstract
    Based on the importance of DNA/RNA binding proteins in different cellular processes, finding binding sites of them play crucial role in many applications, like designing drug/vaccine, designing protein, and cancer control. Many studies target this issue and try to improve the prediction accuracy with three strategies: complex neural-network structures, various types of inputs, and ML methods to extract input features. But due to the growing volume of sequences, these methods face serious processing challenges. So, this paper presents KDeep, based on CNN-LSTM and the primary form of DNA/RNA sequences as input. As the key feature improving the prediction accuracy, we propose a new encoding... 

    Cancer Detection Classification by cfDNA Methylation

    , M.Sc. Thesis Sharif University of Technology Ezzati, Saeedeh (Author) ; Sharifi Zarchi, Ali (Supervisor)
    Abstract
    Traditional techniques use invasive histology techniques to diagnose cancer. Cancer tissue is sampled directly in this method, which is very painful for the patient. In recent years, scientists have discovered that the cell world is released into the blood plasma after cell death, obtaining useful cancer information. Since methylation changes in cancer cells are very significant and the death rate of cancer cells is high, the methylation of each tissue is different from the other. Furthermore, they were diagnosing the type of cancer.On the other hand, due to the different patterns in methylated DNA with normal DNA and the use of bisulfite treatment technique to detect the degree of... 

    Investigation of Ocular Tumor Dose Enhancement in Proton Therapy in the Presence of Nanoparticles of Different Materials

    , M.Sc. Thesis Sharif University of Technology Alamgir, Jafar (Author) ; Hosseini, Abolfazl (Supervisor) ; Salimi, Ehsan (Supervisor)
    Abstract
    In recent years, the effect of the presence of nanoparticles in the tumor in order to increase the benefit of the treatment in radiation therapy has been the focus of many researchers. Although for photon irradiation, a significant dose increase due to the presence of nanoparticles has been observed, in the case of proton irradiation, due to the different nature of the beam and the lower cross-section of protons with metals compared to photons, scattered and in some cases contradictory findings have been published in the articles, and more studies are needed in this field. Due to laboratory limitations, Monte Carlo simulation is an appropriate tool for simulating difficult real-world... 

    A Study in Genome Editing with Clustered Regularly Interspaced Short Palindromic Repeats

    , M.Sc. Thesis Sharif University of Technology Rostami, Mohammad (Author) ; Sharifi Tabar, Mohsen (Supervisor) ; Rabiee, Hamid Reza (Co-Supervisor) ; Rohban, Mohammad Hossein (Co-Supervisor)
    Abstract
    Clustered Regularly Interspaced Short Palindromic Repeats, or in short, CRISPR is a relatively new technology that enables geneticists and medical researchers to edit parts of the genome by removing, adding, or altering parts of the DNA. Initially found in the genomes of prokaryotic organisms such as bacteria and archaea, this technology can cure many illnesses such as blindness and cancer. A significant issue for a practical application of CRISPR systems is accurately predicting the single guide RNA (sgRNA) on-target efficacy and off-target sensitivity. While some methods classify these designs, most algorithms are on separate data with different genes and cells. The lack of... 

    Cancer Prediction Using cfDNA Methylation Patterns With Deep Learning Approach

    , M.Sc. Thesis Sharif University of Technology Mahdavi, Fatemeh (Author) ; Soleymani Baghshah, Mahdieh (Supervisor)
    Abstract
    Liquid biopsy includes information about the progress of the tumor, the effectiveness of the treatment and the possibility of tumor metastasis. This type of biopsy obtains this information by doing diagnosis and enumerating genetic variations in cells and cell-free DNA (cfDNA). Only a small fraction of cfDNA which might be free circulation tumor DNA (ctDNA) fragments, has mutations and is usually identified by epigenetic variations. On the other hand, the use of liquid biopsy has decreased, and tumors in the final stages are often untreatable due to the low accuracy in prediction of cancer. In this research, the aim is to predict cancer using cfDNA methylation patterns. We obtain these... 

    Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems

    , Article Journal of Biomedical Science ; Vol. 21, issue. 1 , July , 2014 ; ISSN: 10217770 Tahamtan, A ; Ghaemi, A ; Gorji, A ; Kalhor, H. R ; Sajadian, A ; Tabarraei, A ; Moradi, A ; Atyabi, F ; Kelishadi, M ; Sharif University of Technology
    Abstract
    Cervical cancer is the second-most-common cause of malignancies in women worldwide, and the oncogenic activity of the human papilloma virus types (HPV) E7 protein has a crucial role in anogenital tumors. In this study, we have designed a therapeutic vaccine based on chitosan nanodelivery systems to deliver HPV-16 E7 DNA vaccine, considered as a tumor specific antigen for immunotherapy of HPV-associated cervical cancer. We have developed a Nano-chitosan (NCS) as a carrier system for intramuscular administration using a recombinant DNA vaccine expressing HPV-16 E7 (NCS-DNA E7 vaccine). NCS were characterized in vitro for their gene transfection ability. Results: The transfection of CS-pEGFP... 

    DNA impedance biosensor for detection of cancer, TP53 gene mutation, based on gold nanoparticles/aligned carbon nanotubes modified electrode

    , Article Analytica Chimica Acta ; Vol. 836, issue , July , 2014 , p. 34-44 ; ISSN: 00032670 Fayazfar, H ; Afshar, A ; Dolati, M ; Dolati, A ; Sharif University of Technology
    Abstract
    For the first time, a new platform based on electrochemical growth of Au nanoparticles on aligned multi-walled carbon nanotubes (A-MWCNT) was developed for sensitive lable-free DNA detection of the TP53 gene mutation, one of the most popular genes in cancer research. Electrochemical impedance spectroscopy (EIS) was used to monitor the sequence-specific DNA hybridization events related to TP53 gene. Compared to the bare Ta or MWCNT/Ta electrodes, the synergistic interactions of vertically aligned MWCNT array and gold nanoparticles at modified electrode could improve the density of the probe DNA attachment and resulting the sensitivity of the DNA sensor greatly. Using EIS, over the extended... 

    Simulation of mixed electroosmotic/pressure-driven flows by utilizing dissipative particle dynamics

    , Article Microfluidics and Nanofluidics ; Vol. 17, issue. 1 , July , 2014 , pp. 199-215 ; ISSN: 16134982 Mehboudi, A ; Noruzitabar, M ; Mehboudi, M ; Sharif University of Technology
    Abstract
    In this paper, we present an extension of dissipative particle dynamics method in order to study the mixed electroosmotic/pressure-driven micro- or nano-flows. This method is based on the Poisson-Boltzmann equation and has a great potential to resolve the electric double layer (EDL). Hence, apart from studying the bulk flow, it also provides a strong capability in order to resolve the complex phenomena occur inside the EDL. We utilize the proposed method to study the pure electroosmotic and also the mixed electroosmotic/pressure-driven flow through the straight micro-/nano-channels. The obtained results are in good agreement with the available analytical solutions. Furthermore, we study the... 

    DNA and RNA extractions from eukaryotic and prokaryotic cells by graphene nanoplatelets

    , Article RSC Advances ; Vol. 4, issue. 105 , 2014 , p. 60720-60728 Hashemi, E ; Akhavan, O ; Shamsara, M ; Valimehr, S ; Rahighi, R ; Sharif University of Technology
    Abstract
    Graphene nanoplatelets with lateral dimensions of ∼50-200 nm and thicknesses <2 nm were utilized for the extraction of nucleic acids (NAs) from eukaryotic and prokaryotic cells. The graphene nanoplatelets (both chemically exfoliated graphene oxide nanoplatelets and hydrazine-reduced graphene oxide nanoplatelets) successfully extracted plasmid DNA (pDNA) from Escherichia coli bacteria, comparable to a conventional phenol-chloroform (PC) method. Furthermore, it was found that the yield of graphene nanoplatelets in genomic DNA (gDNA) and RNA extractions from embryonic stem cells (ESCs) was also comparable to the yield of the conventional methods. The effects of the graphene nanoplatelets on...