Loading...
Search for: cyclic-voltammetry
0.011 seconds
Total 172 records

    Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications

    , Article Journal of Solid State Electrochemistry ; 2017 , Pages 1-14 ; 14328488 (ISSN) Asen, P ; Shahrokhian, S ; Zad, A. I ; Sharif University of Technology
    Abstract
    Polyaniline/graphene oxide (PANI/GO) co-doped with Zn2+ and Fe3+ was synthesized via a simple and low cost one-step chronoamperometry method on stainless steel (SS) as the substrate. The Fe3+-Zn2+-PANI/GO nanocomposite is characterized using X-ray diffraction as well as Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy. Also, cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy are used to study the electrochemical performance of the as-prepared electrode materials. Significantly, the Fe3+-Zn2+-PANI/GO nanocomposite exhibits a specific... 

    Vertically standing Cu2O nanosheets promoted flower-like PtPd nanostructures supported on reduced graphene oxide for methanol electro-oxidation

    , Article Electrochimica Acta ; Volume 259 , 2018 , Pages 36-47 ; 00134686 (ISSN) Shahrokhian, S ; Rezaee, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The present study reports a simple electrochemical approach to the fabrication of a new nanocomposite containing PtPd nanoflowers (NFs) promoted with two-dimensional (2D) nanosheets (NSs) structure cuprous oxide (Cu2O) supported on reduced graphene oxide (rGO) (PtPd-NFs/Cu2O-NSs/rGO). Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectra, Raman spectroscopy, and energy dispersive X-ray spectroscopy are used for characterization of the PtPd-NPs/Cu2O-NPs/rGO. SEM images showed that vertical-standing arrays of Cu2O with an edge length up to 1 μm and thickness of about 20 nm are electrodeposited on the surface of rGO film. Also, PtPd needle-like NFs with visible and... 

    Highly sensitive nonenzymetic glucose sensing platform based on MOF-derived NiCo LDH nanosheets/graphene nanoribbons composite

    , Article Journal of Electroanalytical Chemistry ; Volume 808 , 2018 , Pages 114-123 ; 15726657 (ISSN) Asadian, E ; Shahrokhian, S ; Iraji Zad, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Herein, a novel sensing platform based on NiCo layered double hydroxide (LDH) nanosheets/graphene nanoribbons (GNRs) modified glassy carbon electrode is presented for sensitive non-enzymetic determination of glucose. In the first step, nanoflower-like NiCo LDH nanosheets were grown on the surface of ZIF-67 dodecahedron nanocrystals which used as sacrificial template and were further characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD) and FTIR. In the next step, in order to fabricate a mechanically stable modified electrode, the as-prepared nanosheets were mixed with... 

    Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications

    , Article Journal of Solid State Electrochemistry ; Volume 22, Issue 4 , 2018 , Pages 983-996 ; 14328488 (ISSN) Asen, P ; Shahrokhian, S ; Iraji Zad, A ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Polyaniline/graphene oxide (PANI/GO) co-doped with Zn2+ and Fe3+ was synthesized via a simple and low cost one-step chronoamperometry method on stainless steel (SS) as the substrate. The Fe3+-Zn2+-PANI/GO nanocomposite is characterized using X-ray diffraction as well as Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy. Also, cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy are used to study the electrochemical performance of the as-prepared electrode materials. Significantly, the Fe3+-Zn2+-PANI/GO nanocomposite exhibits a specific... 

    Electrochemical determination of l-dopa in the presence of ascorbic acid on the surface of the glassy carbon electrode modified by a bilayer of multi-walled carbon nanotube and poly-pyrrole doped with tiron

    , Article Journal of Electroanalytical Chemistry ; Volume 636, Issue 1-2 , 2009 , Pages 40-46 ; 15726657 (ISSN) Shahrokhian, S ; Asadian, E ; Sharif University of Technology
    Elsevier  2009
    Abstract
    There are high attractions in the development of conducting polymer (CP) coatings to improve the electrochemical properties and biocompatibility of electrodes in the area of biosensors. A new type of the modified electrodes is prepared in a layer-by-layer process by using multi-walled carbon nanotube (MWCNT) and poly-pyrrole. In this procedure, the glassy carbon electrode is casted by a drop suspension of MWCNT, which leads to form a thin film of nanotube on its surface. In the second step, electrochemical polymerization of pyrrole in the presence of tiron (used as doping anion) is performed on the surface of the MWCNT pre-coated electrode. The modification procedure led to fabrication of a... 

    In situ two-step preparation of 3D NiCo-BTC MOFs on a glassy carbon electrode and a graphitic screen printed electrode as nonenzymatic glucose-sensing platforms

    , Article ACS Sustainable Chemistry and Engineering ; Volume 8, Issue 38 , 2020 , Pages 14340-14352 Ezzati, M ; Shahrokhian, S ; Hosseini, H ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    In the present study, a rational two-step strategy is employed for the green, fast, very simple, and highly controllable synthesis of the bimetallic nickel-cobalt-based metal-organic frameworks (MOFs) on glassy carbon substrates by in situ transformation of nickel-cobalt-layered double hydroxide nanosheet (NiCo-LDHs NSs) intermediates into nickel-cobalt-benzene tricarboxylic acid MOFs (E-NiCo-BTC MOFs). The structural characteristics of the electrode materials in each step were investigated via Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, elemental mapping, field emission scanning electron microscopy, and transmittance electron microscopy.... 

    ZnO nanoparticle/nanorod-based label-free electrochemical immunoassay for rapid detection of MMP-9 biomarker

    , Article Biochemical Engineering Journal ; Volume 164 , 2020 Shabani, E ; Abdekhodaie, M. J ; Mousavi, S. A ; Taghipour, F ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A label-free electrochemical biosensor was developed for the rapid detection of the matrix metalloproteinase 9 (MMP-9) biomarker on the basis of antibody immobilizing on the zinc oxide (ZnO) nanoparticle and ZnO nanorod electrodes. The charge transfer resistance (Rct) of the electrodes was used as the indicator for MMP-9 concentration, which was obtained through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The ZnO nanorod-based biosensor exhibited linear behavior in the MMP-9 concentration range of 1–1000 ng/ml, which is a wider range than the available concentration ranges for most of the conventional methods. The biosensor sensitivity was 32.5 μA/(decade × cm2)... 

    Differential pulse voltammetric determination of N-acetylcysteine by the electrocatalytic oxidation at the surface of carbon nanotube-paste electrode modified with cobalt salophen complexes

    , Article Sensors and Actuators, B: Chemical ; Volume 133, Issue 2 , 12 August , 2008 , Pages 599-606 ; 09254005 (ISSN) Shahrokhian, S ; Kamalzadeh, Z ; Bezaatpour, A ; Boghaei, D. M ; Sharif University of Technology
    2008
    Abstract
    The preparation and electrochemical performance of the carbon nanotube-paste electrode modified with salophen complexes of cobalt(III) perchlorate, with various substituents on the salophen ligand, as well as their electrocatalytic activity toward the oxidation of N-acetylcysteine (NAC) is investigated. Several Schiff base complexes containing various nucleophilic and electrophilic functional groups were prepared, and their electrochemical characteristics for the electro-oxidation of NAC were evaluated using cyclic and differential pulse voltammetry (CV and DPV). The results revealed, the modified electrodes show an efficient and selective electrocatalytic activity toward the anodic... 

    Interaction of copper(II) complex of compartmental Schiff base ligand N,N′-bis(3-hydroxysalicylidene)ethylenediamine with bovine serum albumin

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 66, Issue 3 , 2007 , Pages 650-655 ; 13861425 (ISSN) Boghaei, D. M ; Farvid, S. S ; Gharagozlou, M ; Sharif University of Technology
    2007
    Abstract
    Circular dichroism (CD) spectroscopy, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the interaction between copper(II) complex of compartmental Schiff base ligand (L), N,N′-bis(3-hydroxysalicylidene)ethylenediamine, and bovine serum albumin (BSA) in 0.1 mol dm-3 phosphate buffer solution adjusted to physiological pH 7.0 containing 20% (w/w) dimethylsulfoxide at room temperature. CD spectra show that the interaction of the copper(II) complex with BSA leads to changes in the α-helical content of BSA and therefore changes in secondary structure of the protein with the slight red shift (2 nm) in CD spectra. From the voltammetric data, i.e. changes in... 

    Electrochemical and computational studies of bio-mimicked Ti3C2Tx MXene-based sensor with multivalent interface

    , Article Journal of Colloid and Interface Science ; Volume 623 , 2022 , Pages 1063-1074 ; 00219797 (ISSN) Ranjbar, S ; Ashari Astani, N ; Atabay, M ; Naseri, N ; Esfandiar, A ; Reza Ejtehadi, M ; Sharif University of Technology
    Academic Press Inc  2022
    Abstract
    Two-dimensional MXenes are the newly emerging family of nanomaterials with competitive performance for nano-device development. Surface functional groups and abundant binding sites make these materials ideal candidates for sensor applications. Herein, we report the successful fabrication of a MXene-based nano-bio device for capturing, sensing, and filtering the Escherichia coli (E. coli) bacteria. Mannose carbohydrate, which binds strongly to E.coli's fimH protein via glucan multivalent interactions, is used as the bio-receptor element. MXene's structure was engineered to guarantee efficient E. coli capturing without mannose detachment. Electrochemical impedance spectroscopy (EIS) and cyclic... 

    Mediator-less highly sensitive voltammetric detection of glutamate using glutamate dehydrogenase/vertically aligned CNTs grown on silicon substrate

    , Article Biosensors and Bioelectronics ; Volume 31, Issue 1 , 2012 , Pages 110-115 ; 09565663 (ISSN) Gholizadeh, A ; Shahrokhian, S ; Iraji zad, A ; Mohajerzadeh, S ; Vosoughi, M ; Darbari, S ; Sanaee, Z ; Sharif University of Technology
    Abstract
    A sensitive glutamate biosensor is prepared based on glutamate dehydrogenase/vertically aligned carbon nanotubes (GLDH, VACNTs). Vertically aligned carbon nanotubes were grown on a silicon substrate by direct current plasma enhanced chemical vapor deposition (DC-PECVD) method. The electrochemical behavior of the synthesized VACNTs was investigated by cyclic voltammetry and electrochemical impedance spectroscopic methods. Glutamate dehydrogenase covalently attached on tip of VACNTs. The electrochemical performance of the electrode for detection of glutamate was investigated by cyclic and differential pulse voltammetry. Differential pulse voltammetric determinations of glutamate are performed... 

    Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus

    , Article Bioelectrochemistry ; Volume 123 , 2018 , Pages 70-76 ; 15675394 (ISSN) Ranjbar, S ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Since that pathogenic bacteria are major threats to human health, this paper describes the fabrication of an effective and durable sensing platform based on gold nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite (AuNPs/CNPs/CNFs) at the surface of glassy carbon electrode for sensitive and selective detection of Staphylococcus aureus (S. aureus). The AuNPs/CNPs/CNFs nanocomposite with the high surface area, excellent conductivity, and good biocompatibility was used for self-assembled of the thiolated specific S. aureus aptamer as a sensing element. The surface morphology of AuNPs/CNPs/CNFs nanocomposite was characterized with field emission scanning electron microscopy...