Loading...
Search for: chemical-oxygen-demand
0.014 seconds

    Catalytic oxidation of sulfides to sulfoxide using manganese(III) complexes with bidentate O,N-donor oxazoline ligand and UHP oxidizing agent

    , Article Catalysis Communications ; Volume 10, Issue 2 , 2008 , Pages 196-200 ; 15667367 (ISSN) Bagherzadeh, M ; Latifi, R ; Tahsini, L ; Amini, M ; Sharif University of Technology
    2008
    Abstract
    The efficient catalytic systems were investigated for the oxidation of various sulfide by manganese(III)-oxazoline complexes, [Mn(phox)2(MeOH)2]ClO4 and Mn(phox)3 (Hphox = 2-(2′-hydroxyphenyl)oxazoline). These complexes were found efficient catalysts for the oxidation of sulfides with urea hydrogen peroxide (UHP) in short reaction times (5 min) and under mild condition. Sulfoxides were obtained as the main products together with variable amounts of sulfones. The efficiency of the catalytic system was strongly influenced by the nature of solvents and axial ligands so the best yields were achieved in a mixture of methanol: dichloromethane and in the presence of imidazole as co-catalyst. © 2008... 

    Optimising nutrient removal of a hybrid five-stage Bardenpho and moving bed biofilm reactor process using response surface methodology

    , Article Journal of Environmental Chemical Engineering ; Volume 7, Issue 1 , 2019 ; 22133437 (ISSN) Ashrafi, E ; Mehrabani Zeinabad, A ; Borghei, S. M ; Torresi, E ; Muñoz Sierra, J ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Nutrient pollution has become a global environmental issue. Innovative biological nutrient removal (BNR) processes are needed to overcome the drawbacks of conventional technologies. This study evaluates the potential of a hybrid 5-stage Bardenpho - moving bed biofilm reactor (MBBR) process for organic carbon and nutrient removal from municipal wastewater at different hydraulic retention time (HRT) and nitrate recycle ratio (R). Response surface methodology (RSM) based on a central composite design (CCD) of thirteen experiments was applied to optimize the nitrogen and phosphorus conversion of the treatment system. High removal efficiencies of about 98.20%, 92.54%, 94.70% and 96.50% for total... 

    Synthesis of TiO2/ZnO electrospun nanofibers coated-sewage sludge carbon for adsorption of Ni(II), Cu(II), and COD from aqueous solutions and industrial wastewaters

    , Article Journal of Dispersion Science and Technology ; Volume 42, Issue 6 , 2021 , Pages 802-812 ; 01932691 (ISSN) Khosravi, M ; Maddah, A. S ; Mehrdadi, N ; Bidhendi, G. N ; Baghdadi, M ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    The nanofibers prepared by electrospinning process have high potential for the removal of toxic matters from wastewaters. In the present study, the titanium dioxide and titanium dioxide/zinc oxide (TiO2/ZnO) nanofibers prepared by electrospinning technique were coated on the sewage sludge carbon (SSC) surface for adsorption of Ni(II), Cu(II), and COD from aqueous solutions and industrial wastewaters of Iran. The synthesized adsorbents were characterized using XRD, SEM and EDX analysis. The effect of adsorbent type, pH, adsorbent dosage, contact time and initial concentrations of Ni(II), Cu(II) and COD on the adsorption capacity of synthesized SSC/TiO2 and SSC/TiO2/ZnO nanofibrous adsorbents... 

    Meta-analysis of bioenergy recovery and anaerobic digestion in integrated systems of anaerobic digestion and microbial electrolysis cell

    , Article Biochemical Engineering Journal ; Volume 178 , 2022 ; 1369703X (ISSN) Amin, M. M ; Arvin, A ; Feizi, A ; Dehdashti, B ; Torkian, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In current study, a meta-analysis approach was used to identify and evaluate the impact of various factors on the performance of integrated systems of anaerobic digestion with microbial electrolysis cell. In this study, related articles on the topic were systematically identified and collected according to the considered criteria, and the effect size that refers to the value of the difference between variables mean (total chemical oxygen demand (TCOD) removal rate and CH4 yield) was estimated. According to the meta-analysis, fed-batch operation mode, the range of 20< temperature ≤30 °C, metal cathodes, the range of 500< anode surface area ≤5000 cm2, HRT (hydraulic retention time) >20 days,... 

    Management Treatment of MDF Effluent by Soil Aquifer Treatment (SAT)

    , M.Sc. Thesis Sharif University of Technology Aghel Dashghapou, Behnam (Author) ; Oskoee, Mohammad Mahdi (Supervisor) ; Jamali, Sirous (Co-Advisor)
    Abstract
    This study deals with the treatment of medium density fiberboard (MDF) effluent aiming at the removal of TSS, COD, BOD and Turbidity by means of soil aquifer treatment (SAT). Removal of parameters were evaluated during transport of MDF effluent under unsaturated flow conditions in 1-m soil (sandy-clay soil) depth. The experimental results showed that the new process with SAT to be very effective. The TSS, COD, BOD and turbidity removal average was about 99%, 30%, 89 and 98.5% at the optimum operation condition, respectively. The SAT should be added before the UASB in order to achieve high removal rate of COD and BOD. The UASB (concentration sludge 40000 mg/l) after SAT treatment MDF... 

    Degradation of humic acids through heterogeneous catalytic ozonation with bone charcoal

    , Article Reaction Kinetics, Mechanisms and Catalysis ; Volume 100, Issue 2 , 2010 , Pages 471-485 ; 18785190 (ISSN) Mortazavi, S. B ; Asgari, Gh ; Hashemian, S. J ; Moussavi, G ; Sharif University of Technology
    2010
    Abstract
    Catalytic ozonation has recently been used as a new means of contaminant removal from water and wastewater. In this study, bone charcoal (BC), a new catalyst prepared under laboratory conditions, was used to catalyze the ozonation of humic substances (HS) in aqueous solutions. The catalytic effect of bone charcoal and the relevant parameters of this ozonation process (solution pH, temperature, scavenger effect, humic acids concentration and BC dosage) were investigated. In the catalytic ozonation experiments, the degradation kinetics was investigated. The reaction rate and the rate constant were determined. The results showed that using a BC catalyst in the ozonation of HS produced a 1.43-... 

    The highest inhibition coefficient of phenol biodegradation using an acclimated mixed culture

    , Article Water Science and Technology ; Volume 73, Issue 5 , 2016 , Pages 1033-1040 ; 02731223 (ISSN) Mohseni, M ; Sharifi Abdar, P. S ; Borghei, S. M ; Sharif University of Technology
    IWA Publishing  2016
    Abstract
    In this study a membrane biological reactor (MBR) was operated at 25±1 °C and pH = 7.5±0.5 to treat synthetic wastewater containing high phenol concentrations. Removal efficiencies of phenol and chemical oxygen demand (COD)were evaluated at four various hydraulic retention times (HRTs) of 24, 12, 8, and 4 hours. The removal rate of phenol (5.51 kg-Phenol kg-VSS-1 d-1), observed at HRT of 4 h,was the highest phenol degradation rate in the literature.According toCODtests, therewere no significant organic matter in the effluent, and phenol was degraded completely by mixed culture. Substrate inhibition was calculated from experimental growth parameters using the Haldane, Yano, and Edward... 

    TiO2 nanofibre assisted photocatalytic degradation of reactive blue 19 dye from aqueous solution

    , Article Environmental Technology ; Volume 30, Issue 3 , 2009 , Pages 233-239 ; 09593330 (ISSN) Rezaee, A ; Ghaneian, M. T ; Taghavinia, N ; Khajeh Aminian, M ; Hashemian, S. J ; Sharif University of Technology
    2009
    Abstract
    The photocatalytic degradation of Reactive Blue 19 (RB19) dye has been studied using TiO2 nanofibre as the photocatalyst in aqueous solution under UV irradiation. Titanium dioxide nanofibre was prepared using a templating method with tetraisopropylorthotitanate as a precursor. The experiments were carried out in the presence of the TiO2 nanofibre, and the effects of pH and electron acceptors on the degradation process were investigated. In order to observe the quality of the aqueous solution, chemical oxygen demand (COD) measurements were also carried out before and after the treatments. The photocatalytic decomposition of RB19 was most efficient in acidic solution. With the addition of... 

    Anaerobic treatment of synthetic medium-strength wastewater using a multistage biofilm reactor

    , Article Bioresource Technology ; Volume 100, Issue 5 , 2009 , Pages 1740-1745 ; 09608524 (ISSN) Ghaniyari Benis, S ; Borja, R ; Monemian, S. A ; Goodarzi, V ; Sharif University of Technology
    2009
    Abstract
    A laboratory-scale multistage anaerobic biofilm reactor of three compartments with a working volume of 54-L was used for treating a synthetic medium-strength wastewater containing molasses as a carbon source at different influent conditions. The start-up period, stability and performance of this reactor were assessed at mesophilic temperature (35 °C). During the start-up period, pH fluctuations were observed because there was no microbial selection or zoning, but as the experiment progressed, results showed that phase separation had occurred inside the reactor. COD removal percentages of 91.6, 91.6, 90.0 and 88.3 were achieved at organic loading rates of 3.0, 4.5, 6.75 and 9.0 kg COD/m3 day,... 

    Photocatalytic degradation of furfural by titania nanoparticles in a floating-bed photoreactor

    , Article Chemical Engineering Journal ; Volume 146, Issue 1 , 2009 , Pages 79-85 ; 13858947 (ISSN) Faramarzpour, M ; Vossoughi, M ; Borghei, M ; Sharif University of Technology
    2009
    Abstract
    In this research, an attempt was made to investigate the potential of nanophotocatalysts for treatment of hazardous wastewater streams. Titanium dioxide nanoparticles (as photocatalyst) were immobilized on a porous and low-density support called "perlite" using a very simple and inexpensive method. TiO2-coated perlite granules were used in a "Floating-bed photoreactor" to study the photocatalytic purification process of a typical wastewater polluted by furfural. The effects of initial concentration, catalyst mass/solution volume ratio, oxidant molar flow, residence time, and light intensity on process removal efficiency, and kinetics of the reactions were studied. SEM analyses showed a... 

    Effective degradation of Reactive Red 195 via heterogeneous electro-Fenton treatment: theoretical study and optimization

    , Article International Journal of Environmental Science and Technology ; Volume 16, Issue 10 , 2019 , Pages 6329-6346 ; 17351472 (ISSN) Nazari, P ; Rahman Setayesh, S ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2019
    Abstract
    Abstract: The magnetite (Fe3O4) nanoparticles were synthesized and supported on the reduced graphene oxide. The characterization of the catalyst was performed by FT-IR, VSM, SEM, XRD, and BET techniques. The obtained results indicated that the in situ synthesis of Fe3O4 using coprecipitation method caused the homogenous formation of magnetite nanoparticles on the surface of reduced graphene oxide (average particle size ~ 71.032 nm) with high stability and catalytic activity toward electro-Fenton removal of Reactive Red 195. The effect of various factors (current intensity, initial pollutant concentration, catalyst weight, and pH) was evaluated by response surface methodology using central... 

    Effect of slow biodegradable substrate addition on biofilm structure and reactor performance in two MBBRs filled with different support media

    , Article Environmental Technology (United Kingdom) ; Volume 41, Issue 21 , 2020 , Pages 2750-2759 Ashrafi, E ; Allahyari, E ; Torresi, E ; Andersen, H. R ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    In this study, two moving-bed biofilm reactors (MBBR1 and MBBR2) filled with different size of carrier media (Kaldnes K1 and Kaldnes K1 micro, respectively) were subjected to soluble (sugar and sodium acetate (Ac)) substrate and mixture of soluble and particulate (particulate potato starch (PS)) substrate in a very high organic loading rate (12 kgCOD/m3·d) at different temperatures (26 and 15°C, in MBBR1 and MBBR2, respectively). The effects of carrier type and substrate on biofilm structure and reactor performance have been studied. Starch was removed by adsorption at the biofilm surface and hydrolyzed which caused substrate gradient in MBBR1, however, hydrolyzed uniformly within biofilm in... 

    Optimization of multistage biological nutrient removal reactors for removal of nitrogen and phosphorus from saline refinery wastewater

    , Article International Journal of Environmental Science and Technology ; Volume 17, Issue 12 , 2020 , Pages 4865-4878 Delashoob, A ; Borghei, S. M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    The present study aimed at investigating the biological treatment of nitrogen and phosphorus from the saline wastewater in various systems. In the end, moving bed biofilm reactor and anaerobic/anoxic/aerobic (AOA) were chosen as the best systems. In the present study, the investigations were carried out in two 24-h and 12-h retention times for three nitrogen concentrations, 200 mg/l, 300 mg/l, and 400 mg/l, two phosphorus concentrations, 14 mg/l and 20 mg/l, three Chemical oxygen demand (COD) concentrations, 800 mg/l, 1000 mg/l, and 1200 mg/l, and four salt concentrations, 10 g/l, 12 g/l, 17 g/l, and 20 g/l. The obtained results indicated that the COD removal percentage was high in a range... 

    Synthesis, characterization and swelling behavior of chitosan-sucrose as a novel full-polysaccharide superabsorbent hydrogel

    , Article Journal of Applied Polymer Science ; Volume 109, Issue 4 , 15 August , 2008 , Pages 2648-2655 ; 00218995 (ISSN) Pourjavadi, A ; Aghajani, V ; Ghasemzadeh, H ; Sharif University of Technology
    2008
    Abstract
    A novel full-polysaccharide hydrogel was prepared by crosslinking of chitosan with periodate-oxidized sucrose. A tetraaldehyde molecule is synthesized via periodate oxidation of sucrose and then applied as a crosslinking agent to form a new hydrogel network. A mechanism for the superabsorbent hydrogel formation via reductive N-alkylation was also suggested. The structure of the hydrogel was confirmed by FTIR spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). It is shown that crosslinking of chitosan can improve its thermal stability. The effects of crosslinker concentration, pH, and inorganic salt on the swelling behavior of the hydrogel were studied. The... 

    How to quantify sustainable development: A risk-based approach to water quality management

    , Article Environmental Management ; Volume 41, Issue 2 , 2008 , Pages 200-220 ; 0364152X (ISSN) Sarang, A ; Vahedi, A ; Shamsai, A ; Sharif University of Technology
    2008
    Abstract
    Since the term was coined in the Brundtland report in 1987, the issue of sustainable development has been challenged in terms of quantification. Different policy options may lend themselves more or less to the underlying principles of sustainability, but no analytical tools are available for a more in-depth assessment of the degree of sustainability. Overall, there are two major schools of thought employing the sustainability concept in managerial decisions: those of measuring and those of monitoring. Measurement of relative sustainability is the key issue in bridging the gap between theory and practice of sustainability of water resources systems. The objective of this study is to develop a... 

    Electrocatalytic oxidation and nanomolar determination of guanine at the surface of a molybdenum (VI) complex-TiO2 nanoparticle modified carbon paste electrode

    , Article Journal of Electroanalytical Chemistry ; Volume 624, Issue 1-2 , 2008 , Pages 73-78 ; 15726657 (ISSN) Mazloum Ardakani, M ; Taleat, Z ; Beitollahi, H ; Salavati Niasari, M ; Mirjalili, B. B. F ; Taghavinia, N ; Sharif University of Technology
    Elsevier  2008
    Abstract
    A modified carbon paste electrode was prepared by incorporating TiO2 nanoparticles with bis[bis(salicylidene-1,4-phenylenediamine)molybdenum(VI)]. A mixture of fine graphite powder with 4 wt% of TiO2 nanoparticles was applied for the preparation of the carbon paste (by dispersing in paraffin) and finally modified with a molybdenum (VI) complex. The electrocatalytic oxidation of guanine (G) was investigated on the surface of the molybdenum (VI) complex-TiO2 nanoparticle modified carbon paste electrode (MCTNMCPE) using cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry (CHA) and chronocoloumetry (CHC). Using the modified electrode, the kinetics of G... 

    Upgrading activated sludge systems and reduction in excess sludge

    , Article Bioresource Technology ; Volume 102, Issue 22 , November , 2011 , Pages 10327-10333 ; 09608524 (ISSN) Hazrati, H ; Shayegan, J ; Sharif University of Technology
    2011
    Abstract
    Most of 200 Activated Sludge Plant in Iran are overloaded and as a result, their efficiency is low. In this work, a pilot plant is manufactured and put into operation in one of the wastewater treatment plants in the west of Tehran. Instead of conventional activated sludge, a membrane bioreactor and an upflow anaerobic sludge blanket reactor used as a pretreatment unit in this pilot. For the sake of data accuracy and precision, an enriched municipal wastewater was opted as an influent to the pilot. Based on the attained result, the optimum retention time in this system was 4. h, and the overall COD removal efficiency was 98%. As a whole, the application of this retrofit would increase the... 

    A new flat sheet membrane bioreactor hybrid system for advanced treatment of effluent, reverse osmosis pretreatment and fouling mitigation

    , Article Bioresource Technology ; Volume 192 , 2015 , Pages 177-184 ; 09608524 (ISSN) Hosseinzadeh, M ; Bidhendi, G. N ; Torabian, A ; Mehrdadi, N ; Pourabdullah, M ; Sharif University of Technology
    Abstract
    This paper introduces a new hybrid electro membrane bioreactor (HEMBR) for reverse osmosis (RO) pretreatment and advanced treatment of effluent by simultaneously integrating electrical coagulation (EC) with a membrane bioreactor (MBR) and its performance was compared with conventional MBR. Experimental results and their statistical analysis showed removal efficiency for suspended solids (SS) of almost 100% for both reactors. HEMBR removal of chemical oxygen demand (COD) improved by 4% and membrane fouling was alleviated according to transmembrane pressure (TMP). The average silt density index (SDI) of HEMBR permeate samples was slightly better indicating less RO membrane fouling. Moreover,... 

    Simultaneous biological organic matter and nutrient removal in an anaerobic/anoxic/oxic (A2O) moving bed biofilm reactor (MBBR) integrated system

    , Article International Journal of Environmental Science and Technology ; Volume 14, Issue 2 , 2017 , Pages 291-304 ; 17351472 (ISSN) Jaafari, J ; Seyedsalehi, M ; Safari, G. H ; Ebrahimi Arjestan, M ; Barzanouni, H ; Ghadimi, S ; Kamani, H ; Haratipour, P ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2017
    Abstract
    In the present study, the performance of three moving bed biofilm reactors (MBBRs) has been evaluated in series with anaerobic/anoxic/oxic (A2O) units for simultaneous removal of organic matter and nutrients (nitrogen and phosphorous) from a synthetic wastewater with characteristics similar to those of a typical municipal wastewater. Response surface methodology based on central composite design was used to investigate the effects of nitrate recycle ratio, hydraulic retention time (HRT), and influent chemical oxygen demand (COD) on the organic and nutrient removal and optimization process. The optimized values of influent COD, HRT, and R were 462 mg/L, 10 h, and 3.52, respectively. The... 

    The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell

    , Article Bioresource Technology ; Volume 261 , 2018 , Pages 350-360 ; 09608524 (ISSN) Bazdar, E ; Roshandel, R ; Yaghmaei, S ; Mardanpour, M. M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This study develops a photosynthetic microalgae microbial fuel cell (PMMFC) engaged Chlorella vulgaris microalgae to investigate effect of light intensities and illumination regimes on simultaneous production of bioelectricity, biomass and wastewater treatment. The performance of the system under different light intensity (3500, 5000, 7000 and 10,000 lx) and light/dark regimes (24/00, 12/12, 16/8 h) was investigated. The optimum light intensity and light/dark regimes for achieving maximum yield of PMMFC were obtained. The maximum power density of 126 mW m−3, the coulombic efficiency of 78% and COD removal of 5.47% were achieved. The maximum biomass concentration of 4 g l−1 (or biomass yield...