Loading...
Search for: carbon-fibers
0.011 seconds

    A new refill friction spot welding process for aluminum/polymer composite hybrid structures

    , Article Composite Structures ; Volume 174 , 2017 , Pages 59-69 ; 02638223 (ISSN) Karami Pabandi, H ; Movahedi, M ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    A new refill friction spot welding process called Threaded Hole Friction Spot Welding (THFSW) was introduced to join AA5052 aluminum to short-carbon-fiber-reinforced polypropylene (PP-SCF) composite sheets. The process was based on filling of the pre-threaded hole by melted and re-solidified polymer. The results showed that THFSW was successful to join aluminum to polymer sheets and the hole was completely filled with melted polymer. Formation of a reaction layer composed mostly of Al, C and O as well as interlocking between the threaded hole and the re-solidified polymer were recognized as main bonding mechanisms. Maximum shear-tensile strength of the joints reached to ∼80 percent of the... 

    The long-term evaluation of FRPs bonded to timber

    , Article European Journal of Wood and Wood Products ; Volume 76, Issue 6 , 2018 , Pages 1623-1636 ; 00183768 (ISSN) Toufigh, V ; Yarigarravesh, M ; Mofid, M ; Sharif University of Technology
    Abstract
    This research investigated the long-term environmental effects on bond strength at the interface between fiber- reinforced polymers (FRPs) and timber. A total of 581 timber specimens were bonded with seven types of FRP sheets (unidirectional and bidirectional glass, carbon, aramid, and hybrids) using a wet lay-up technique. The specimens were exposed to acidic, alkaline, fresh water, and sea water solutions with pH of 2.5, 7, 7.25, 10, and 12.5 for 1, 3, 6, 9, and 12 months. A chamber was also used to simulate ultraviolet radiation after 6 months. A series of single-lap shear tests were then conducted to determine the interfacial bond strength reduction. The results showed that bidirectional... 

    High-Performance, flexible, all-solid-state wire-shaped asymmetric micro-supercapacitors based on three dimensional CoNi2S4 nanosheets decorated-nanoporous Ni-Zn-P Film/Cu wire

    , Article Journal of Physical Chemistry C ; Volume 123, Issue 35 , 2019 , Pages 21353-21366 ; 19327447 (ISSN) Shahrokhian, S ; Naderi, L ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Demand increasing for next generation portable and miniaturized electronics has aroused much interest to explore microscale and lightweight energy storage devices. Herein, we demonstrate successful development of flexible wire-shaped micro-supercapacitors (micro-SCs) based on novel CoNi2S4/E-NZP film@Cu wire electrode. The etched Ni-Zn-P (E-NZP) film was synthesized by directly deposition of NZP film on Cu wire, followed by a chemical etching process. Alkaline etching treatment provides a micro- and mesoporous structure with high surface area and facilitates the penetration of electrolyte ions into the electrode matrix. Then, CoNi2S4 nanosheets as electroactive material are electrochemically... 

    Progressive damage analysis of an adhesively bonded composite T-joint under bending, considering micro-scale effects of fiber volume fraction of adherends

    , Article Composite Structures ; Volume 258 , 2021 ; 02638223 (ISSN) Barzegar, M ; Davoodi Moallem, M ; Mokhtari, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, a numerical study on failure assessment and stress distribution on the adhesive region in a composite T-joint under bending load case is investigated using cohesive zone method (CZM). The Finite Element Model (FEM) has been verified with experimental results. To study the load transfer capability of the T-joint, five different adhesives are considered in the adhesive region and the effect of geometrical parameters such as stringer thickness, corner radius, and adherend thickness as well as micromechanical properties of reinforced fiber composite adherends are investigated. Effective properties of two composite adherends including Carbon-Epoxy (IM7/8552) and Glass-Epoxy... 

    Development of high-efficient double layer microwave absorber based on Fe3O4/carbon fiber and Fe3O4/rGO

    , Article Journal of Magnetism and Magnetic Materials ; Volume 537 , 2021 ; 03048853 (ISSN) Gang, Q ; Niaz Akhtar, M ; Boudaghi, R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Recently, preparation of lightweight absorbers with high performance capability are urgently needed for practical demanded in order to solve the severe electromagnetic pollution. In the present study, two different composites (Fe3O4/carbon fiber and Fe3O4/rGO) were uniformly incorporated into resin epoxy matrix to obtain single and double layer X-band absorber with 20 wt% filler loading. Each of the composites were prepared via solvothermal process. According to the results, the minimum reflection loss values for each single layer Fe3O4/carbon fiber and Fe3O4/rGO absorber were −15 dB (3 mm thickness and 1.5 GHz bandwidth) and −50 dB (3 mm thickness and 4 GHz bandwidth) respectively. By... 

    Enhancement of bond characteristics of ribbed-surface GFRP bars with concrete by using carbon fiber mat anchorage

    , Article Construction and Building Materials ; Volume 134 , 2017 , Pages 507-519 ; 09500618 (ISSN) Ashrafi, H ; Bazli, M ; Vatani Oskouei, A. V ; Sharif University of Technology
    Abstract
    The bond of fiber-reinforced polymer (FRP) reinforcement is expected to be more sensitive to the strength and geometry of the ribs than conventional steel reinforcement. In this study, the effect of carbon fiber mat anchorage on the pullout behavior of glass fiber-reinforced polymer (GFRP) bars embedded in normal concrete is studied. The studied parameters were the compressive strength of the concrete (16 MPa, 24 MPa, and 37 MPa), and, the length and diameter of the anchorage. In total, 15 variables were studied. Ribbed GFRP bars with 10 mm nominal diameter and 80 mm embedment length, ld, (which is 8 times the bar diameter) were considered. Based on the results for concretes with the... 

    Nickel molybdate nanorods supported on three-dimensional, porous nickel film coated on copper wire as an advanced binder-free electrode for flexible wire-type asymmetric micro-supercapacitors with enhanced electrochemical performances

    , Article Journal of Colloid and Interface Science ; Volume 542 , 2019 , Pages 325-338 ; 00219797 (ISSN) Naderi, L ; Shahrokhian, S ; Sharif University of Technology
    Academic Press Inc  2019
    Abstract
    Wire-shaped micro-supercapacitors attracted extensive attentions in next-generation portable and wearable electronics, due to advantages of miniature size, lightweight and flexibility. Herein, NiMoO 4 nanorods supported on Ni film coated Cu wire are successfully fabricated thorough direct deposition of Ni film onto Cu wire as the conductive substrate, followed by growth of the NiMoO 4 nanorods on Ni film coated Cu wire substrate by means a hydrothermal annealing process. The prepared 3D, porous electrode demonstrates extremely high areal specific capacitance of 12.03F cm −2 at the current density of 4 mA cm −2 and retained capacitance of 8.23 F cm −2 at a much higher current density of 80... 

    An Experimental Evaluation of Environmental Effects on Fiber Composites-Construction Materials Interface

    , Ph.D. Dissertation Sharif University of Technology Yarigarravesh, Mahdireza (Author) ; Mofid, Masood (Supervisor) ; Toufigh, Vahab (Supervisor)
    Abstract
    Most of the investigations during the two past decades focused on the effect of moisture and temperature on the bond at the interface of carbon or glass-fabrics and concrete, masonry or timber. Few investigations have studied the effect of chemical solutions, dry heat exposure and ultravilolent (UV) radiation on the bond at the interface of other types of fiber reinforced-polymers (FRPs) and masonry, timber and concrete in the short and long terms. Therefore, this research aims to investigate the effect of five chemical solutions with pH of 2.5±0.1, 7±0.1, 7.25±0.1, 10±0.1 and 12.5±0.1 on the interfacial bond strength between seven types of FRPs (unidirectional, bidirectional and hybrids)... 

    Seismic Performance Evaluation of Moment Frame Using Concrete Beams Reinforced with FRP Bars

    , M.Sc. Thesis Sharif University of Technology Ali Asghar Mamaghani, Mojtaba (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    Today, many evidences, including the distribution of galactic velocities, gravitational lensing observations, and the cosmic microwave background, show that there exist dark matter (non-baryon matter) in large-scale cosmological structures that are stable, free of charge and without color, which has gravitational interaction like normal matter. The hypothesis that weakly interacting massive particles (WIMPs) as a dark matter candidate with mass range of several tens of GeV to several teV and with the typical couplings of Electroweak order of magnitude, is an attractive and desirable model, Which naturally explains the density of cosmic dark matter in agreement with observations. Alongside... 

    Finite Element Modeling of Flexural Behavior of RC Beams Using FRP

    , M.Sc. Thesis Sharif University of Technology Jafarzadeh Eslami, Mehran (Author) ; Rahimzadeh Rofooei, Fayyaz (Supervisor)
    Abstract
    The flexural behavior of reinforced concrete beams through application of FRP is studied, considering FRP-concrete bonding. Moreover, the nonlinear behavior of concrete (generation of crack and crush) is taken into consideration. Different parameters such as the number of layers of CFRP sheets, the effect of tensile reinforcing bars, the effect of using glass fibers, and modeling resin layer between the concrete and FRP are investigated. The results are compared with the existing experimental tests and those obtained from analytical method, ACI 440.2R-08 and ISIS Canada. The results show that by adding CFRP sheet to the control beam, the stiffness and flexural strength of the beam improves... 

    Effect of Carbon and Glass FRP Confinement on Compressive Strength of Pre-Damaged Concrete Cylinders

    , M.Sc. Thesis Sharif University of Technology Mohammadi Firouz, Reza (Author) ; Joghatae, Abdolreza (Supervisor)
    Abstract
    Recent investigations on construction engineering have determined that repairing of Reinforced Concrete (RC) by means of fiber reinforced polymer (FRP) composites is an effective method of retrofitting existing columns. The main research in this thesis focuses on the repair of concrete specimens which are damaged and their initial strength has been reduced. To achieve this purpose, through experimental procedures, the effect of confining damaged concrete cylinders by FRP, has been investigated. The experimental program included three parameters: type of fibers (glass or carbon), type of confining (full or partial), and the number of layers. First concrete cylinders were made and loaded to... 

    Behavior of RC Concrete Column Strengthened with CFRP, Steel Jacketand Reinforced Concrete Jacket

    , M.Sc. Thesis Sharif University of Technology Haghdel, Farhad (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    Reinforced concrete (RC) column in building often needs strengthening either due to defects in the column themselves, having to support higher loads than those foreseen in the initial design of the structure or as the result of ageing or accidental damage such as earthquake force. The use of FRP wrapping, steel caging or reinforce concrete jacketing for this purpose is now a common practice in many countries throughout the world. Even though a considerable number of researches have been conducted on retrofitting methods during past years, but very limited researches have been done to compare these methods. This research has investigated the effect of jacketing from different views. The... 

    Flexural Failure Mechanism of Concrete Beams Strengthened with FRP and Comparing The Result With Classic Method Of Strengthening

    , M.Sc. Thesis Sharif University of Technology Tahsiri, Hamid Reza (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    Retrofitting of reinforced concrete and steel structures is a very important issue in Structural Engineering due to the reasons such as drawbacks in previous codes, revision of application of structures , destructive environmental factors and deficiencies in construction process.
    Strengthening of structures with FRP composites is one of the methods that have been welcomed by researchers due to its unique properties including high tensile strength, light weight, simple application and resistance to corrosive environment. Although the main purpose of retrofitting is to increase the overall load carrying capacity of the structures, the failure mechanism of the strengthened member is also... 

    Seismic Behavior Comparison of RC Shear Walls Strengthened Using FRP Composites, Steel Elements, and Concrete Jacket

    , M.Sc. Thesis Sharif University of Technology Habibi, Omid (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    This paper aims at investigating the seismic behavior of strengthened reinforced concrete (RC) shear walls using a 3D finite element analysis. A series of four different configurations of carbon fiber reinforced polymer (CFRP) composites, four different schemes of steel elements and two different schemes of concrete jacket are utilized to compare the two methods of retrofitting RC shear walls with similar dimensions and reinforcement ratios. Nonlinear simulations of the RC shear walls are conducted under the action of lateral cyclic loading in ABAQUS Explicit software. In addition, the numerical modeling for RC walls strengthened by CFRP composites as well as steel elements are validated... 

    Ultrasonic Evaluation for the Detection of Contact Defects of the Timer and Fiber-reinforced Polymer (FRP)

    , M.Sc. Thesis Sharif University of Technology Ramezanpour, Moein (Author) ; Toufigh, Vahab (Supervisor)
    Abstract
    Fiber-reinforced polymer (FRP) composites have been used tremendously to repair and rehabilitate timber structures due to their formability, ease of use, and high specific strength. The quality of the bond between FRP and timber substrate is critical for having complete composite action. In this paper, a comprehensive set of linear and nonlinear ultrasonic methods was performed to investigate the bond between carbon-FRP (CFRP) and timber. For this purpose, one hundred and twenty-six specimens of reinforced timber were prepared. Two techniques were considered to bond CFRP and timber: 1) externally bonded reinforcement (EBR) and 2) externally bonded reinforcement on the groove (EBROG). The... 

    Experimental Investigation on the Behavior of RC Arches Strengthened by GFRP and CFRP Composites

    , M.Sc. Thesis Sharif University of Technology Moradi, Hossein (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    The rehabilitation of old structures holds a lot of importance, as many structures with a life span of over 30 years are prone to severe damage and even collapse. To overcome this problem, the use of FRP sheets to strengthen structures is suggested. RC-arches have been used in many structures such as bridges and require specific consideration in terms of strengthening. So far, the influence of the number of FRP layers and location, the height of arch and percentage of reinforcement on strengthened arch behavior have not been investigated. In this research, reinforced concrete arch members strengthened with GFRP and CFRP were investigated. A total of 28 Specimens, including four... 

    Experimental and Numerical Investigation on Mechanical Properties of Continuous Fiber Reinforced Parts Fabricated with FDM Additive Manufacturing Method

    , M.Sc. Thesis Sharif University of Technology Arjmandi, Mohammad (Author) ; Yousefi, Reza (Supervisor) ; Kouchakzadeh, Mohammad Ali (Supervisor)
    Abstract
    With advancement of science of aircraft design and limitations of traditional manufacturing methods, using new ones in order to improve efficiency is needed. Among those methods to improve structure efficiency are weight reduction or increase in strength. Increasing strength-to-weight ratio and reduction of weight could be achieved by using composite materials and topology optimization respectively. Manufacturing such parts with efficient design using traditional methods is hard or impossible. Additive manufacturing as a new technology which is being developed every day, can be a big help to aerospace industry. Considering the importance of strength-to-weight ratio in aerospace industry and... 

    Effect Of Longitudinally Ultrasonic Assisted Milling On Surface Integrity of CFRP Composites

    , M.Sc. Thesis Sharif University of Technology Charkhian, Ali (Author) ; Akbari, Javad (Supervisor)
    Abstract
    Nowadays, processes with the ability to machine advanced materials are very much needed by industries. Therefore, compare of a rotary ultrasonic-assisted machining process with a conventional machining process is carried out in this study. In order to evaluate this process, the milling and drilling processes are conducted on the carbon fiber-reinforced polymer composite and titanium materials where cutting forces, surface roughness, and fiber pull-out are selected as critical factors for analysis. As a result, it is seen that rotary ultrasonic-assisted machining has a good performance in the milling and drilling of advanced materials. In particular, it is shown that fiber pull-out is... 

    Flexural behavior of concrete beams reinforced with high volume steel fibers

    , Article ISEC 2013 - 7th International Structural Engineering and Construction Conference: New Developments in Structural Engineering and Construction ; 2013 , Pages 1031-1036 ; 9810753551 (ISBN) ; 9789810753559 (ISBN) Khaloo, A ; Jahromi, H. S ; Mohammadian, A ; Yazdani S ; Singh A ; Sharif University of Technology
    2013
    Abstract
    This paper presents the results of an experimental study on the flexural behavior of ten 10 × 15 × 120 (cm) steel reinforced high strength concrete beams under deflection control loading conditions. Test variable includes volumetric percentage of steel fibers (0%, 1.5%, 3%, 4%, 5%). The plain concrete strength was 30MPa. The monotonic concentrated load was applied at the center of the beam, the relative deflection was measured, and demec points were used to determine curvature of the beam. Load-deflection and moment-curvature diagrams have been obtained and plotted for each beam individually. Test results indicate that higher fiber content considerably improves flexural behavior and provides... 

    Studies on the friction and wear characteristics of rubber-based friction materials containing carbon and cellulose fibers

    , Article Journal of Materials Science ; Volume 46, Issue 6 , 2011 , Pages 1890-1901 ; 00222461 (ISSN) Shojaei, A ; Arjmand, M ; Saffar, A ; Sharif University of Technology
    Abstract
    The present study was an attempt to examine the effects of carbon and cellulose fibers on the tribological characteristics of rubber-based friction materials (RBFMs). A fiber free RBFM as a reference material and a series of fiber included RBFMs at different volume fractions were prepared by two-roll mill. The friction tests were per-formed at different sliding velocities and various drum temperatures. The mechanical properties and surface microstructure of friction specimens were also examined. It was revealed that the carbon fiber infiuences slightly the coefficient of friction (COF) of RBFM but it improves the wear resistance and the fade behavior considerably. It reduces the drum...