Loading...
Search for: buckling
0.012 seconds
Total 234 records

    Dynamic and Vibration Analysis of Wavy Carbon Nanotube-Reinforced Composites

    , M.Sc. Thesis Sharif University of Technology Shafiee Motahar, Mohammad (Author) ; Ahmadiyan, Mohammad Taghi (Supervisor) ; Asghari, Mohsen (Supervisor)
    Abstract
    Characterization and simulation of carbon nanotube-reinforced composites at large scale have been a concern of researchers in the past decade. This is due to the computational complication of considering many embedded carbon nanotubes (CNTs). However a simple meshing of organized CNT distribution in the matrix can ease this obstacle. In this study, a finite element approach is employed to investigate the elastodynamic behavior of a wavy CNT-reinforced composite structure. A three dimensional structure with up to 6400 uniformly distributed wavy CNTs is embedded in a polymer matrix. Each wavy nanotube is represented by a set of beam elements. The effect of nanotube waviness and volume fraction... 

    Numerical Study of the Behaviour of Cruciform Columns Under Axial Compression

    , M.Sc. Thesis Sharif University of Technology Bakhtiary, Ahmad Reza (Author) ; Khansari, Vahid (Supervisor)
    Abstract
    Due to restrictions on connecting beams to columns in steel structures when moment-resisting connections in two perpendicular directions are employed, the use of ordinary wide-flange sections or fabricated boxes becomes impractical. Application of Cruciform sections, especially when fabricated from two split-I sections (IPE sections) seems to be a reasonable solution to this problem. In this study, using Finite Elements Method and a commercial FEM software, the nonlinear behaviour of a number of cruciform columns, already tested by others, were modeled numerically. After reaching results in acceptable agreement with those of the tests, potentially suitable sections for fabrication of... 

    Analysis of Vibrations and Buckling of Conical Shell Homogeneous Orthotropic

    , M.Sc. Thesis Sharif University of Technology Zafari, Danial (Author) ; Kouchakzadeh, Mohammad Ali (Supervisor)
    Abstract
    The purpose of this thesis parametric study the natural frequencies and the criti-cal buckling multilayer composites truncated cone with the effect of lateral shear deformation. For this purpose five-bending tensile deformation equation of motion of the truncated cone shell in a suitable coordinate system have been studied. Then solve the five-coordinate movement for power series-are consid-ered. The natural frequencies and critical buckling force for the various truncat-ed cones with four different boundary conditions are calculated and the results with the results of similar conical shells with the same boundary conditions, tak-ing into account the effect of lateral shear deformation and... 

    Investigation into the Behavior of Cylindrical Steel Silos Composed of Flat or Corrugated Sheets

    , Ph.D. Dissertation Sharif University of Technology Moazezi Mehretehran, Alireza (Author) ; Maleki, Shervin (Supervisor)
    Abstract
    Steel cylindrical silos are one of the most practical structures in handling and storage of bulk solids in many industries and agricultural sectors. Steel silos may be composed of flat or corrugated sheets. Due to small wall thickness, shell structures are vulnerable to buckling failure. Unsymmetrical loading conditions rising from frequent filling and discharge cycles during the lifetime of these storages are almost the main reason for local or global instability of silos. However, they may experience additional lateral loads such as, wind load and seismic load that essentially impose unsymmetrical pressure on shell walls and can lead to buckling, as well. Under wind pressure, steel... 

    Vibration and Stability Analysis of Multiwall Carbon Nanocones on Elastic Foundation Using Nonlocal Theorem

    , Ph.D. Dissertation Sharif University of Technology Fotouhi, Mohammad Mostafa (Author) ; Haddadpour, Hassan (Supervisor) ; Dehghani Firoozabadi, Rouhollah (Supervisor)
    Abstract
    Carbo nanocones are one of the nanostructures that are investigated and takes a large deal of attention in nanotechnology. In the present study the governing equilibrium equations of motion of carbon nanotubes under external pressure are derived using a nonlocal shell model and first order shear deformation theory. The natural frequency and buckling load are extracted using modal method along with Galerkin technique.Afterthis using both Winkler and Pasternak elastic foundation models, the governing equations of motion of nanocones embedded in the elastic medium extracted using a novel approach with the nonlocal shell model along with Hamilton’s principle. These equations solved using... 

    Experimental Study of Various Parameters of Electrospinning on the Morphology of Micro and Nano Fibers

    , M.Sc. Thesis Sharif University of Technology Abdollahzadeh, Iman (Author) ; Iraji zad, Azam (Supervisor)
    Abstract
    Electrospinning is a method for producing of micro and nanometer polymeric fibers. Nowadays, electrospun fibers have been demanded a lot because of various applications of fibers in optical industries, tissue engineering, and chemical and biological sensors. Producing of more complicated shape of fibers by using two new methods called Electrical Bending and Mechanical Buckling are interested in this field. The aim of this thesis is to prepare such fibers and study the effective parameters on the shapes of them. Fibers are collected on the aluminum and Fluorine-doped tin oxide (FTO) glass. Then they were observed by optical microscope. In the Electrical Bending method, we used PEO: PAMPS and... 

    Stability of C60-peapods under hydrostatic pressure

    , Article Acta Materialia ; Volume 55, Issue 16 , 2007 , Pages 5483-5488 ; 13596454 (ISSN) Najafi Sohi, A ; Naghdabadi, R ; Sharif University of Technology
    2007
    Abstract
    The stability of single-walled carbon nanopeapods under hydrostatic pressure is investigated using a continuum-based elastic shell model. The model incorporates nonbonded van der Waals interactions between the nested fullerenes and the host carbon nanotube. By deriving an explicit equation, it is shown that the critical hydrostatic pressure for the onset of structural instability of a completely packed C60@(10,10) nanopeapod is ∼1.11 GPa, while for the case of the pristine host (10,10) nanotube it is ∼1.84 GPa. Thus, it is concluded that the fullerene encapsulation weakens the host nanotube under hydrostatic pressure. In addition, it is quantitatively shown that any decrease in packing... 

    Propose and characteristics study of a new actuation method for micropumps, using membrane buckling

    , Article 4th ASME Integrated Nanosystems Conference: Design, Synthesis, and Applications, Berkeley, CA, 14 September 2005 through 16 September 2005 ; 2005 , Pages 25-26 ; 0791842088 (ISBN); 9780791842089 (ISBN) Saghafi, M. H ; Ahmadian, M. T ; Salehi, H ; Monazami, R ; Zade, A. Q ; Sharif University of Technology
    American Society of Mechanical Engineers  2005
    Abstract
    In this paper, we present a novel idea on actuation system in micropumps. The prominent goal of this paper is to propose and prove a mechanical actuation system which works in high frequency and has good ability in producing flow and pressure in micro actuation system. As like as other common micropumps, the proposed scheme is consisted of two check valves and an actuation space. The actuation space includes a volume of liquid in a chamber and a cylindrical membrane as the actuator. The main aspect of this idea is employment of buckling as a consequence of incensement of its internal pressure caused by temperature rising in the membrane. Rise of temperature is done by passing a controllable... 

    Investigation of thrust effect on the vibrational characteristics of flexible guided missiles

    , Article Journal of Sound and Vibration ; Volume 272, Issue 1-2 , 2004 , Pages 287-299 ; 0022460X (ISSN) Pourtakdoust, S. H ; Assadian, N ; Sharif University of Technology
    Academic Press  2004
    Abstract
    In this paper the effect of thrust on the bending behaviour of flexible missiles is investigated. For this purpose, the governing equations of motion of a flexible guided missile are derived following the Lagrangian approach. The missile is idealized as a non-uniform beam where the bending elastic deflections are modelled using the method of modal substitution. The vehicle (time varying) bending modeshapes and natural frequencies are determined by modelling variable mass and stiffness distributions with thrust and mass burning effects accounted for. To solve this problem the missile is divided into several segments of uniform stiffness, density and axial force distribution. This approach... 

    Buckling of the composite cracked cylindrical shells subjected to axial load

    , Article 2003 ASME International Mechanical Engineering Congress, Washington, DC, 15 November 2003 through 21 November 2003 ; Volume 470 , 2003 , Pages 87-93 ; 0277027X (ISSN) Vaziri, A ; Nayeb Hashemi, H ; Estekanchi, H. E ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2003
    Abstract
    Cylindrical shells constitute the main structural components in pressure vessels and pipelines. Cylindrical shells made of fiber-reinforced composites are now being considered in the design of many components due to their high specific strength and stiffness. Buckling is one of the main failure considerations, when designing the cylindrical shells. The buckling behavior of the composite cylindrical shells can severely be compromised by introducing defect in the structure, due to high stress field generated around these defects. Defects could be generated during service due to cyclic loading or during manufacturing. A reliable operation of these structures require to understand the effects of... 

    Buckling analysis of three-dimensional functionally graded EulerBernoulli nanobeams based on the nonlocal strain gradient theory

    , Article Journal of Computational Applied Mechanics ; Volume 53, Issue 1 , 2022 , Pages 24-40 ; 24236713 (ISSN) Soleimani, A ; Zamani, F ; Gorgani, H. H ; Sharif University of Technology
    University of Tehran  2022
    Abstract
    This paper presents a nonlocal strain gradient theory for capturing size effects in buckling analysis of Euler-Bernoulli nanobeams made of threedimensional functionally graded materials. The material properties vary according to any function. These models can degenerate to the classical models if the material length-scale parameters is assumed to be zero. The Hamilton's principle applied to drive the governing equation and boundary conditions. Generalized differential quadrature method used to solve the governing equation. The effects of some parameters, such as small-scale parameters and constant material parameters are studied. © 2022 PAGEPress Publications. All rights reserved  

    Natural frequencies and buckling of pressurized nanotubes using shear deformable nonlocal shell model

    , Article Journal of Mechanical Science and Technology ; Volume 26, Issue 2 , 2012 , Pages 563-573 ; 1738494X (ISSN) Firouz Abadi, R. D ; Fotouhi, M. M ; Permoon, M. R ; Haddadpour, H ; Sharif University of Technology
    Abstract
    The small-scale effect on the natural frequencies and buckling of pressurized nanotubes is investigated in this study. Based on the firstorder shear deformable shell theory, the nonlocal theory of elasticity is used to account for the small-scale effect and the governing equations of motion are obtained. Applying modal analysis technique and based on Galerkin's method a procedure is proposed to obtain natural frequencies of vibrations. For the case of nanotubes with simply supported boundary conditions, explicit expressions are obtained which establish the dependency of the natural frequencies and buckling loads of the nanotube on the small-scale parameter and natural frequencies obtained by... 

    Buckling analysis of tapered composite beams using a higher order finite element formulation

    , Article Journal of Reinforced Plastics and Composites ; Volume 29, Issue 17 , 2010 , Pages 2663-2683 ; 07316844 (ISSN) Zabihollah, A ; Ganesan, R ; Sharif University of Technology
    2010
    Abstract
    Tapered composite beams are increasingly being used in various engineering applications such as helicopter yoke, robot arms, and turbine blades. In the present work, the buckling analysis of laminated tapered composite beams is conducted using a higher order finite element formulation. In tapered laminates, the material and geometric discontinuities at ply drop-off locations lead to significant discontinuities in stress distributions. Higher order formulation ensures the continuity of the stress distribution through the thickness of a laminate as well as across the element interfaces, which is very important for the analysis of tapered laminates. In addition, higher order finite element... 

    Numerical and experimental investigation on a BRB confined with partially carbon fiber reinforced polymer (CFRP)

    , Article Engineering Structures ; Volume 223 , 2020 Bashiri, M ; Toufigh, V ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Buckling-restrained braces (BRBs) have been spread widely, especially in high seismic hazard zones due to their excellent energy absorption capacity. BRBs are composed of a main load-carrying steel core restrained with other elements mostly made of concrete and steel casing to preserve it from buckling. Although BRBs provide excellent cyclic behavior, a problem is with their heaviness, which leads to difficulties such as installation and transportation. This study presents a numerical and experimental investigation on a BRB with a new proposed restraining system composed of concrete panels confined with partially carbon fiber reinforced polymer (CFRP) strips to reduce the weight of the... 

    Buckling and postbuckling of advanced grid stiffened truncated conical shells with laminated composite skins

    , Article Thin-Walled Structures ; Volume 149 , 2020 Bohlooly, M ; Kouchakzadeh, M. A ; Mirzavand, B ; Noghabi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    A theoretical approach is presented to derive an explicit formula for buckling load and postbuckling path of advanced grid stiffened conical shells (stiffeners with laminated composite skins). Different types of fiber paths of grids including stringer, ring, and helical are considered. The simply supported truncated conical shell with imperfection is subjected to axial compression. Basic formulations are constructed using the classical theory of shells and von Karman type of nonlinear strain-displacement relationships. The equilibrium and compatibility equations are solved by Galerkin procedure, and an explicit relation is obtained to predict the equilibrium paths. Results for different... 

    Challenges in calculation of critical buckling load of tubular members of jacket platforms in finite element modeling

    , Article Journal of Marine Science and Technology (Japan) ; Volume 25, Issue 3 , 2020 , Pages 866-886 Tabeshpour, M. R ; Erfani, M. H ; Sayyaadi, H ; Sharif University of Technology
    Springer  2020
    Abstract
    Accurate estimation of the capacity curve of offshore jacket structures to achieve performance levels and ductility is of great importance. Proper modeling of compressive members to correctly investigate global and local buckling is crucial in estimation of the capacity curve. Buckling modes and deformations due to local buckling can be considered, if the compressive braces are modeled by shell or solid elements. The purpose of this paper is to achieve the correct compressive behavior of braces with solid type elements and investigate the effects of five different parameters such as D/t, L/D, mesh size, mesh size ratio, and imperfections. ABAQUS FE software is used for this purpose. The... 

    Failure analysis of bolted joints in foam-core sandwich composites

    , Article Journal of Reinforced Plastics and Composites ; Volume 27, Issue 15 , 2008 , Pages 1635-1647 ; 07316844 (ISSN) Zabihpoor, M ; Moslemian, R ; Afshin, M ; Nazemi, M. H ; Sharif University of Technology
    2008
    Abstract
    This study represents an effort to predict the bearing strength, failure modes, and failure load of bolted joints in foam-core sandwich composites. The studied joints have been used in a light full composite airplane. By using solid laminates, a new design for the joint zone is developed. These solid laminates include a number of glass plies with total thickness equal to core thickness. The effect of solid laminate size and interface angle of foam-solid laminate in the bonding zone on the bearing strength, failure loads and type of modes are investigated. The numerical study is performed using 3D FEM in ANSYS commercial code. Tsai-Wu failure criterion is used in the failure analysis. The... 

    Effects of geometric imperfections on the performance of Sahand cooling tower

    , Article 10th East Asia-Pacific Conference on Structural Engineering and Construction, EASEC 2010, Bangkok, 3 August 2006 through 5 August 2006 ; Volume 5 , 2006 , Pages 331-338 ; 9748257207 (ISBN); 9789748257204 (ISBN) Riahi, H. T ; Haghighi, B ; Sharif University of Technology
    School of Engineering and Technology  2006
    Abstract
    During construction of one of the Sahand cooling towers due to slip forming performance some imperfections were raised mostly between elevation of +30 and +40 meter. It was evaluated that some points of the shell should be repaired. In constructing the cooling tower from elevation +40 to +60 meter these imperfections were removed and the cooling tower was constructed with no problem until the elevation +130 meter. In this paper reasons of generation of geometric imperfections in Sahand cooling tower are clearly shown and possible ways for preventing them are discussed. Applied repairing method for Sahand cooling tower is explained in detail. Geometrical imperfections of the constructed... 

    Buckling analysis of multilayered functionally graded composite cylindrical shells

    , Article Applied Mechanics and Materials ; Volume 108 , 2012 , Pages 74-79 ; 16609336 (ISSN) ; 9783037852729 (ISBN) Kargarnovin, M. H ; Hashemi, M ; Sharif University of Technology
    Abstract
    In this paper, the buckling analysis of a multilayered composite cylindrical shell which volume fraction of its fiber varies according to power law in longitudinal direction, due to applied compressive axial load is studied. Rule of mixture model and reverse of that are employed to represent elastic properties of this fiber reinforced functionally graded composite. Strain displacement relations employed are based on Reissner-Naghdi-Berry's shell theory. The displacement finite element model of the equilibrium equations is derived by employing weak form formulation. The Lagrangian shape function for in-plane displacements and Hermitian shape function for displacement in normal direction to... 

    Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation

    , Article European Journal of Mechanics, A/Solids ; Volume 30, Issue 4 , July , 2011 , Pages 571-583 ; 09977538 (ISSN) Fallah, A ; Aghdam, M. M ; Sharif University of Technology
    2011
    Abstract
    In this study, simple analytical expressions are presented for large amplitude free vibration and post-buckling analysis of functionally graded beams rest on nonlinear elastic foundation subjected to axial force. Euler-Bernoulli assumptions together with Von Karman's strain-displacement relation are employed to derive the governing partial differential equation of motion. Furthermore, the elastic foundation contains shearing layer and cubic nonlinearity. He's variational method is employed to obtain the approximate closed form solution of the nonlinear governing equation. Comparison between results of the present work and those available in literature shows the accuracy of this method. Some...