Loading...
Search for: buckling
0.016 seconds
Total 234 records

    Evaluation of the Cyclic Performance of Buckling Restrained Braces with Sliding Friction Connection

    , M.Sc. Thesis Sharif University of Technology Yazdani Kachoie, Pedram (Author) ; Mofid, Masood (Supervisor)
    Abstract
    In today’s world, the use of lateral load-bearing systems, such as bracings, has become a pretty common practice. Often showing axial deformation behavior, these members exhibit proper performance under tensile loads but tend to become unstable under compressive loads. In contrast to common bracing systems, the buckling-restrained bracing (BRB) systems perform well under not only tensile loads but also compressive loads. Recent studies have paid greater deals of attention to the application of short-core BRB systems in different structures. The bracing core has been shortened to increase the core deformation and hence the energy dissipation capacity of the bracing system. In this condition,... 

    Investigation of Strain Jumping and Its Effect on Evaluating Capacity of Steel Bracing Deformations

    , M.Sc. Thesis Sharif University of Technology Karbalaee, Mohammad (Author) ; Moghaddam, Hassan (Supervisor)
    Abstract
    In this study, HSS and double angle braces subjected to cyclic loading in order to study the buckling and post buckling behavior have been investigated by Finite Element method. The results of FE analysis are fairly in good agreement with experiments. Analysis demonstrate that when local buckling occurs in middle span, subsequently, strain rises severely. Accordingly, this strain jumping causes early fracture in braces. Therefore, local buckling can be one of the primary reasons of fracture in braces. As a result, local buckling must be considered one of the primary limit state of Performance-Based design of steel braces. In addition, finding a way to predict local buckling can help us to... 

    Strengthening of Liquid Storage Tanks by Frictional Damper

    , M.Sc. Thesis Sharif University of Technology Kaboodanian, Hamid (Author) ; Moghaddam, Hassan (Supervisor)
    Abstract
    Considering the role of fluid storage tanks within or after an earthquake and the irreparable damages from their destruction that arise from the nature of the fluids of flammable or toxic nature stored in those tanks, it is very important to ensure stability and durability of the tanks when an earthquake is occurring. One of the most important damages to storage tanks within the past earthquakes has been lack of stability of their walls taking place in the form of elephant buckling. A certain storage tank was subject to a case study in this research and the tank's body, foundation, anchorages, the tread between the fluid and tank's body and between the bottom sheet and foundation were... 

    Buckling of Laminated Composite Truncated Conical Shells with Variable Thickness

    , M.Sc. Thesis Sharif University of Technology Kazemi, Mohammad Erfan (Author) ; Koochakzadeh, Mohammad Ali (Supervisor)
    Abstract
    In the present study, the buckling of generally laminated truncated conical shells having thickness variation expressed by a linear function, subjected to axial compression with simply or clamped supports has been considered. To begin with, the fundamental relations for a conical shell with variable thickness have been derived applying thin-walled shallow shell theory of Donnell-type and theorem of minimum potential energy; non-linear terms of Donnell equations by the help of adjacent-equilibrium criterion are linearized. Governing equations are solved using power series method and are applicable for all combinations of classical boundary conditions. The results are validated with Galerkin... 

    Performance of Jacket Platform Equipped with BRB (Buckling Restrained Brace) under Earthquake and Wave Loads

    , M.Sc. Thesis Sharif University of Technology Partovi Koloor, Valiollah (Author) ; Golafshani, Ali Akbar (Supervisor) ; Tabeshpour, Mohamad Reza (Co-Advisor)
    Abstract
    Offshore platforms are one of the most important structures in oil-rich countries, so that their economic benefit makes it very expensive to stop their usage. Therefore, it is essential that their performance is not disrupted by earthquake or the tidal waves made by severe storms. In the conventional bracing systems, it is assumed that the braces buckle under compressive forces; but Buckling Restrained Brace (BRB) does not buckle under pressure. In this study performance of BRB in jacket platform, with a case study of Resalat platform, has been investigated under earthquake load and powerful wave. The modeling of jacket equipped with this brace has been done in Abaqus software, and results... 

    Selection of Suitable Arrangements of Buckling-Restrained Braces for Reducing Residual and Maximum Drift of Structures

    , M.Sc. Thesis Sharif University of Technology Vaezzadeh, Amin (Author) ; Ahmadizadeh, Mehdi (Supervisor)
    Abstract
    By constraining the steel members against lateral buckling, buckling-restrained braces (BRB’s) show similar load-deformation behaviors and energy absorption capacities in both tension and compression. As a result, BRB’s demonstrate significant energy dissipation capacity compared to ordinary braces. On the other hand, the relatively small post-yield stiffness of BRB’s usually leads to significant residual drifts, which may render the structure unusable. In recent decades, significant research has been put into improving the performance of structures equipped with BRB’s. In this project, the current methods to enhance the performance of the BRB’s are explored, and novel approaches are... 

    Assessment of Performance Based Behavior of Steel Moment Resisting Frames

    , M.Sc. Thesis Sharif University of Technology Vahedian, Vahid (Author) ; Moghaddam, Hassan (Supervisor)
    Abstract
    In order to reduce structural and nonstructural damages and associated financial losses during intense seismic events such as Bam earthquake, seismic retrofitting of existing structures should be considered as a special issue. In this regard, for quantifying the seismic performance of structures a guideline termed “instruction for seismic rehabilitation of existing building No.360” is issued which is mainly borrowed from performance-based assessment procedures FEMA 356. In contrast to conventional seismic design methods which are based on controlling stress ratio for different load combinations, in performance-based earthquake engineering methodology, the displacement control of structural... 

    Free Vibration and Buckling Analysis of a Laminated Composite Cylinder Made of Functionally Graded Material with Lengthwise Properties Variation Including Thermal Effects

    , M.Sc. Thesis Sharif University of Technology Hashemi, Mehdi (Author) ; Kargarnovin, Mohammad Hossein (Supervisor)
    Abstract
    In recent decades, employing fiber-reinforced composite has growing field in various industries due to distinct features like high specific stiffness and strength. Studies in case of this type of composite have not been stopped and nowadays, widespread researches are conducted over optimization of them. As a result, the effect of distributing fiber in this composite by taking the concept of functionally graded materials, on vibrations and buckling behaviors including natural frequencies and minimum axial bulking load under different boundary conditions for a multi-layered cylindrical shell in which volume fraction of fiber along its length varies according to power-law model are investigated... 

    Rehabilitation of Reinforced Concrete Frames using Ductile Bracing Systems

    , M.Sc. Thesis Sharif University of Technology Hadei, Mehdi (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    In this thesis, the nonlinear seismic behavior of typical Iranian building is evaluated. The evaluation results indicated that these building, which were designed, based on first edition of 2800 standard and before, due to ductility and stiffness deficiency, don’t satisfy the 3th edition of 2800 standard and FEMA356 requirements, then retrofit of the most old structures is recommended. Selected samples include ordinary moment resistant concrete frames. The effectiveness of three retrofit schemes, concentric steel bracing (CBF), Eccentric steel bracing (EBF) and buckling restrained bracing, are studied and compared. The results of investigation indicated that although CBF retrofit scheme is... 

    Buckling Analysis of Beaded Metallic Cylindrical Shells

    , M.Sc. Thesis Sharif University of Technology Nesaei, Faraz (Author) ; Kouchakzadeh, Mohammad Ali (Supervisor)
    Abstract
    Cylindrical shells are widely used in industries. For example, they are used as type 3 pressure vessel's liner. In this work, linear buckling of bead stiffened cylindrical shells under axial load or lateral pressure has been investigated by using numerical modeling. Bead form of cylindrical shell in longitudinal and circumferential direction and combination of both direction is considered. Different parameters such as number, dimension, direction (inside or outside) and cross-section's area of beaded form are considered. The obtained results show that creation of longitudinal beads decrease and increase the critical load and pressure compared to the simple cylindrical shell respectively. The... 

    Buckling Analysis of Composite Truncate Conical Sandwich Panel with Flexible Core under Axial Load and Hydrostatic Pressure

    , M.Sc. Thesis Sharif University of Technology Mehri, Mohsen (Author) ; Kouchakzadeh, Mohammad Ali (Supervisor)
    Abstract
    In the present study, the buckling of conical sandwich panel with composite faces and flexible core is investigated. At first, the nonlinear differential equations based on Donnell and Novozhilov theories with relevant boundary conditions for conical shells are derived using energy method and Hamilton principle. In the following, by applying adjacent-equilibrium criterion, the equations are linearized and the equations of conical shell are obtained. Then, the results obtained from these theories are compared, and based on the benefits and application domain of the theories, Novozhilov theory is selected to model composite faces of the sandwich panel. High-order sandwich theory is used for... 

    Seismic Behavior of Concentric Steel Braced Frames In Near Fault Ground Motion

    , M.Sc. Thesis Sharif University of Technology Mahdizadeh Sari, Alireza (Author) ; Golafshani, Ali Akbar (Supervisor)
    Abstract
    The use of braced frames has become more popular in seismic design of buildings because of the simplicity in design and construction. The first event that occurs in the earthquake for a concentrically brace frame (CBF), is the buckling of the strut. The inelastic behavior of CBF systems is dominated by brace buckling, yielding and the post buckling behavior. The Inelastic performance of the brace is nonsymmetrical, because of the difference in the tensile and compressive strength of the brace and the deterioration in the resistance after buckling. so we have too complexity in modeling the inelastic performance of brace members. Also the subject of the near fault ground motion and design of... 

    Stability of Atherosclerotic Arteries Using Fluid-structure Interaction

    , M.Sc. Thesis Sharif University of Technology Manzoori, Amir Hossein (Author) ; Fallah, Famida (Supervisor)
    Abstract
    Tortuosity is an abnormality that may occur in some arteries, such as carotid. It can reduce the blood flow to distal organs, and even in severe cases, causes ischemia and stroke. Tortuosity can be congenital or occurs due to hypertension and reduced axial pre-stretch of artery, in which case called buckling. Since atherosclerotic plaques disrupt the normal pattern of blood flow, and thus make the artery more susceptible to buckling, in this study, the effect of atherosclerotic plaques on arterial stability has been investigated using computational simulation of fluid-structure interaction under pulsatile flow and large deformation. Ideal geometry of normal and atherosclerotic carotid artery... 

    Investigation into the Behavior of Cylindrical Steel Silos Composed of Flat or Corrugated Sheets

    , Ph.D. Dissertation Sharif University of Technology Moazezi Mehretehran, Alireza (Author) ; Maleki, Shervin (Supervisor)
    Abstract
    Steel cylindrical silos are one of the most practical structures in handling and storage of bulk solids in many industries and agricultural sectors. Steel silos may be composed of flat or corrugated sheets. Due to small wall thickness, shell structures are vulnerable to buckling failure. Unsymmetrical loading conditions rising from frequent filling and discharge cycles during the lifetime of these storages are almost the main reason for local or global instability of silos. However, they may experience additional lateral loads such as, wind load and seismic load that essentially impose unsymmetrical pressure on shell walls and can lead to buckling, as well. Under wind pressure, steel... 

    Post-Buckling Analysis of Microplates based on the Strain Gradient Elasticity Theory

    , M.Sc. Thesis Sharif University of Technology Maboudi, Ghazale (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    In recent years, the world has seen a great progress in micro electro-mechanical systems (MEMS). Small size, low weight, high accuracy and low energy consumption have made these devices applicable in a variety of usages. In MEMS devices, mechanical components are used for specific purposes among which one of the most widely used are micro plates. Microplates are used in the structure of many devices such as microswitchs and atomic force microscopes. Therefore, studying of static and dynamic behavior of microplates is important. As the object gets smaller (to the scale of micro and nano meters), the classic theory of mechanics of continuous media cannot predict the behavior due to its... 

    Thermal Local Buckling of Metal Truncated Conical Shells with Composite Rainforced Layers by Finite Element Method

    , M.Sc. Thesis Sharif University of Technology Merati, Ali (Author) ; Hosseini Kordkheili, Ali (Supervisor)
    Abstract
    In this study, the thermal buckling behavior of thin metal liner reinforced by composite shell in present of the initial imperfection is investigated. For this purpose, the Ryzener – Myndlyn shear-deformation theory & the virtual work method are used to extract equilibrium equations. In this work, the conical shell with c-c, s-s, c-f boundary conditions has been studied. The outer layer of reinforced composite is exposed to constant ambient temperature and iner layer is exposed to heat. Metal liner and reinforced composite shell are merged with together. In other words, the degrees of freedom at each node for both shells are assumed to be equal. Solution method is finite element method using... 

    Analytical Static and Dynamic Solution of a Mindlin Rectangular Plate under In-Plane Loads Using Fourier Series and Auxiliary Polynomial Functions

    , M.Sc. Thesis Sharif University of Technology Mohammad Esmaeili, Reyhaneh (Author) ; Mofid, Masoud (Supervisor)
    Abstract
    This research presents an innovative analytical solution to static, free vibration and buckling of an isotropic, homogeneous Mindlin plate with uniform thickness. This method satisfies all classical boundary conditions including free, simply supported and clamped as well as non-classical ones. Moreover, Mindlin plates on Winkler foundation of arbitrary stiffness function are investigated. In this study, the deflection and rotation of straight normal line of the plate about x and y axes are represented as the functions of sine and cosine Fourier series, accompanied by auxiliary functions. These auxiliary functions are of great importance because these functions satisfy arbitrary boundary... 

    Investigating the Application of y-Braced Frames in Seismic Performance of Steel Structures

    , Ph.D. Dissertation Sharif University of Technology Majid Zamani, Sohail (Author) ; Vafai, Abolhassan (Supervisor)
    Abstract
    Finding suitable locations for installing conventional concentric bracings such as X and V, without interfering with building architecture and its openings, is a routine challenge in building design. One of the less known forms of concentric bracings which can be used to solve this issue, is the y-shaped bracing composed of three braces. In the current thesis, results of analytical studies, computer modeling and experimental tests are presented to extend the knowledge of structural behavior of y-bracings. As the first step, effective buckling lengths of braces with rigid connections were found from equilibrium equations incorporating the effect of axial force on rotational stiffness of... 

    Buckling Analysis of Composite Cylindrical Shells Under External Pressure

    , M.Sc. Thesis Sharif University of Technology Farahbakhshi, Amir (Author) ; Fallah Rajabzadeh, Famida (Supervisor)
    Abstract
    The aim of this project is buckling and post-buckling analysis of laminated composite circular cylindrical shells under external pressure on the basis of different shell theories. Based on Donnell, Love, and Sanders nonlinear shell theories within the first-order shear deformation model and von Karman geometric nonlinearity, the potential energy of composite circular cylindrical shells under external pressure with simply supported edges is extracted and by minimizing of the total potential energy and implementing the Ritz method, buckling pressure, the nonlinear post-buckling analysis and the curves of static equilibrium paths are presented. Furthermore, the effect of the external energy due... 

    Vibration and Stability Analysis of Multiwall Carbon Nanocones on Elastic Foundation Using Nonlocal Theorem

    , Ph.D. Dissertation Sharif University of Technology Fotouhi, Mohammad Mostafa (Author) ; Haddadpour, Hassan (Supervisor) ; Dehghani Firoozabadi, Rouhollah (Supervisor)
    Abstract
    Carbo nanocones are one of the nanostructures that are investigated and takes a large deal of attention in nanotechnology. In the present study the governing equilibrium equations of motion of carbon nanotubes under external pressure are derived using a nonlocal shell model and first order shear deformation theory. The natural frequency and buckling load are extracted using modal method along with Galerkin technique.Afterthis using both Winkler and Pasternak elastic foundation models, the governing equations of motion of nanocones embedded in the elastic medium extracted using a novel approach with the nonlocal shell model along with Hamilton’s principle. These equations solved using...