Loading...
Search for: biomaterials
0.006 seconds
Total 100 records

    In vitro co-culture of human skin keratinocytes and fibroblasts on a biocompatible and biodegradable scaffold

    , Article Iranian Biomedical Journal ; Volume 13, Issue 3 , 2009 , Pages 169-177 ; 1028852X (ISSN) Shariati, S. R. P ; Shokrgozar, M. A ; Vossoughi, M ; Eslamifar, A ; Sharif University of Technology
    2009
    Abstract
    Background: Extensive full-thickness burns require replacement of both epidermis and dermis. In designing skin replacements, the goal has been to re-create this model and make a product which has both essential components. Methods: In the present study, we developed procedures for establishing confluent, stratified layers of cultured human keratinocytes on the surface of modified collagen-chitosan scaffold that contains fibroblasts. The culture methods for propagation of keratinocytes and fibroblasts isolated from human neonatal foreskin were developed. The growth and proliferation of normal human keratinocytes were evaluated in serum-free (keratinocyte growth medium) and our modified... 

    Hydrothermal synthesis of aligned Hydroxyapatite nanorods with ultra-high crystallinity

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 21, Issue 2 , 2008 , Pages 109-116 ; 1728-144X (ISSN) Manafi, S ; Rahimipour, M. R ; Yazdani, B ; Sadrnezhaad, S. K ; Amin, M. H ; Sharif University of Technology
    Materials and Energy Research Center  2008
    Abstract
    Hydroxyapatite nanorods aligned with ultrahigh crystallinity and high-yield were successfully synthesized through a hydrothermal approach. In this experiment, a new composition of cetyltrimethylammonium bromide ((CH 3(CH2)15N+(CH3) 3Br-) was designated as CTAP)/Ca(NO3) 2/ (NH4)2HPO4/NaOH and distilled water under hydrothermal condition, to synthesize single crystal HAp nanorods with diameter of 20 ± 10 nm and length of 80 ± 20 nm, was introduced. Crystal phases were determined by X-ray diffraction (XRD). Scanning electron microscope (SEM) was applied to investigate the morphology. The microstructure of the HAp products were further observed by transmission electron microscope (TEM) and high... 

    Multifunctional conductive biomaterials as promising platforms for cardiac tissue engineering

    , Article ACS Biomaterials Science and Engineering ; Volume 7, Issue 1 , 2021 , Pages 55-82 ; 23739878 (ISSN) Mousavi, A ; Vahdat, S ; Baheiraei, N ; Razavi, M ; Norahan, M. H ; Baharvand, H ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Adult cardiomyocytes are terminally differentiated cells that result in minimal intrinsic potential for the heart to self-regenerate. The introduction of novel approaches in cardiac tissue engineering aims to repair damages from cardiovascular diseases. Recently, conductive biomaterials such as carbon- and gold-based nanomaterials, conductive polymers, and ceramics that have outstanding electrical conductivity, acceptable mechanical properties, and promoted cell-cell signaling transduction have attracted attention for use in cardiac tissue engineering. Nevertheless, comprehensive classification of conductive biomaterials from the perspective of cardiac cell function is a subject for... 

    Fabrication and characterization of scaffolds containing different amounts of allantoin for skin tissue engineering

    , Article Scientific Reports ; Volume 11, Issue 1 , 2021 ; 20452322 (ISSN) Dorri Nokoorani, Y ; Shamloo, A ; Bahadoran, M ; Moravvej, H ; Sharif University of Technology
    Nature Research  2021
    Abstract
    Using the skin tissue engineering approach is a way to help the body to recover its lost skin in cases that the spontaneous healing process is either impossible or inadequate, such as severe wounds or burns. In the present study, chitosan/gelatin-based scaffolds containing 0.25, 0.5, 0.75, and 1% allantoin were created to improve the wounds’ healing process. EDC and NHS were used to cross-link the samples, which were further freeze-dried. Different in-vitro methods were utilized to characterize the specimens, including SEM imaging, PBS absorption and degradation tests, mechanical experiments, allantoin release profile assessment, antibacterial assay, and cell viability and adhesion tests.... 

    Polymer/metal composite 3D porous bone tissue engineering scaffolds fabricated by additive manufacturing techniques: A review

    , Article Bioprinting ; Volume 25 , 2022 ; 24058866 (ISSN) Mohammadi Zerankeshi, M ; Bakhshi, R ; Alizadeh, R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The employment of tissue engineering scaffolds in the reconstruction of the damaged bone tissues has shown remarkable promise since they significantly facilitate the healing process. Fabrication of highly porous biocompatible scaffolds with sufficient mechanical strength is still challenging. In this regard, polymers have been widely utilized to construct three-dimensional (3D) porous scaffolds due to their excellent processability and biocompatibility. However, insufficient mechanical strength and inappropriate degradation rate of the monophasic polymer scaffolds in the bone regeneration process, as the main challenges, limit their extensive clinical application. The incorporation of... 

    Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti-6Al-4V by sol-gel method for biomedical applications: An in vitro study

    , Article Materials Science and Engineering C ; Volume 33, Issue 4 , 2013 , Pages 2002-2010 ; 09284931 (ISSN) Abrishamchian, A ; Hooshmand, T ; Mohammadi, M ; Najafi, F ; Sharif University of Technology
    2013
    Abstract
    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti-6Al-4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol-gel method. The structural characterization and electron microscopy results confirmed well crystallized HA-MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%)... 

    Fabrication of biocompatible titanium scaffolds using space holder technique

    , Article Journal of Materials Science: Materials in Medicine ; Volume 23, Issue 10 , 2012 , Pages 2483-2488 ; 09574530 (ISSN) Dezfuli, S. N ; Sadrnezhaad, S. K ; Shokrgozar, M. A ; Bonakdar, S ; Sharif University of Technology
    Springer  2012
    Abstract
    Open-pore titanium scaffolds were fabricated by sintering of compressed mixtures of TiH1.924 and urea. Spherical and irregular shaped space holders were used to investigate the effect of pore shape on cellular behavior. After removal of the space holder, the shape of the spacers was replicated to the pores. Average diameter of the pores was in the range of 300-600 lm. SEM images showed that titanium hydride resulted in higher surface roughness and larger micro porosities than pure titanium. In vitro evaluationswere carried out by using MTT assay, measuring alkaline phosphatase activity and alizarin red staining in flow perfusion bioreactor for cell culture. Observations revealed excellent... 

    Advances in skin regeneration: application of electrospun scaffolds

    , Article Advanced Healthcare Materials ; Volume 4, Issue 8 , 2015 , Pages 1114-1133 ; 21922640 (ISSN) Norouzi, M ; Boroujeni, S. M ; Omidvarkordshouli, N ; Soleimani, M ; Sharif University of Technology
    Wiley-VCH Verlag  2015
    Abstract
    The paucity of cellular and molecular signals essential for normal wound healing makes severe dermatological ulcers stubborn to heal. The novel strategies of skin regenerative treatments are focused on the development of biologically responsive scaffolds accompanied by cells and multiple biomolecules resembling structural and biochemical cues of the natural extracellular matrix (ECM). Electrospun nanofibrous scaffolds provide similar architecture to the ECM leading to enhancement of cell adhesion, proliferation, migration and neo tissue formation. This Review surveys the application of biocompatible natural, synthetic and composite polymers to fabricate electrospun scaffolds as skin... 

    Nanomechanical properties of TiO2 granular thin films

    , Article ACS Applied Materials and Interfaces ; Volume 2, Issue 9 , 2010 , Pages 2629-2636 ; 19448244 (ISSN) Yaghoubi, H ; Taghavinia, N ; Keshavarz Alamdari, E ; Volinsky, A.A ; Sharif University of Technology
    2010
    Abstract
    Post-deposition annealing effects on nanomechanical properties of granular TiO2 films on soda-lime glass substrates were studied. In particular, the effects of Na diffusion on the films' mechanical properties were examined. TiO2 photocatalyst films, 330 nm thick, were prepared by dip-coating using a TiO2 sol, and were annealed between 100 °C and 500 °C. Film's morphology, physical and nanomechanical properties were characterized by atomic force microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, differential thermo-gravimetric analysis, and nanoindentation. Contrary to expectations, the maximum film hardness was achieved for 300°C annealing, with a value of 0.69 ± 0.05 GPa.... 

    Preparation of biodegradable gelatin/PVA porous scaffolds for skin regeneration

    , Article Artificial Cells, Nanomedicine and Biotechnology ; Volume 45, Issue 5 , 2017 , Pages 928-935 ; 21691401 (ISSN) Mahnama, H ; Dadbin, S ; Frounchi, M ; Rajabi, S ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    Porous scaffolds composed of gelatin/poly (vinyl alcohol), (Gel/PVA), were prepared using combination of freeze gelation and freeze drying methods. The effect of polymer concentration, gelatin/PVA ratio, and glutaraldehyde/gelatin ratio (GA/Gel) was investigated on morphology of pores, swelling ratio, biodegradation, and skin cell culture. At optimum preparation conditions the scaffolds had uniform pore size distributions showing high swelling ratio of 23.6. The scaffolds were of biodegradable nature and almost degraded in 28 days. Human dermal fibroblast cells (HDF) were cultured on the scaffolds and MTS assay was conducted to evaluate the influence of PVA on growth and proliferation of the... 

    Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine

    , Article Artificial Cells, Nanomedicine and Biotechnology ; Volume 46, Issue 7 , 2018 , Pages 1314-1330 ; 21691401 (ISSN) Samadishadlou, M ; Farshbaf, M ; Annabi, N ; Kavetskyy, T ; Khalilov, R ; Saghfi, S ; Akbarzadeh, A ; Mousavi, S ; Sharif University of Technology
    Abstract
    Magnetic carbon nanotubes (MCNTs) have been widely studied for their potential applications in medicine, diagnosis, cell biology, analytical chemistry, and environmental technology. Introduction of MCNTs paved the way for the emergence of new approaches in nanobiotechnology and biomedicine as a result of their multifarious properties embedded within either the carbon nanotubes (CNTs) or magnetic parts. Numerous preparation techniques exists for functionalizing CNTs with magnetic nanoparticles, and these versatile strategies lay the ground for the generation of novel and versatile systems which are applicable to many industries and biological areas. Here, we review and discuss the recent... 

    Novel fluoridated silk fibroin/ TiO2 nanocomposite scaffolds for bone tissue engineering

    , Article Materials Science and Engineering C ; Volume 82 , 2018 , Pages 265-276 ; 09284931 (ISSN) Johari, N ; Madaah Hosseini, H. R ; Samadikuchaksaraei, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    It is known that Fluoride ions strongly affect bone mineralization and formation. In the present study, the engineered bone tissue scaffolds are fabricated using silk fibroin (SF) and flouridated TiO2 nanoparticles. TiO2 nanoparticles are modified by fluoride ions, and different levels (0, 5, 10, 15 and 20 wt%) of the fluoridated TiO2 nanoparticles (TiO2-F) were subsequently added to the SF matrix through phase separation method to prepare silk fibroin/flouridated TiO2 nanocomposite scaffolds (SF/TiO2-F). Phase structure, functional groups, morphology and mechanical properties of the obtained scaffolds were evaluated by X-ray diffraction method (XRD), Fourier transform infrared spectroscopy... 

    Fabrication and evaluation of a bilayer hydrogel-electrospinning scaffold prepared by the freeze-gelation method

    , Article Journal of Biomechanics ; Volume 98 , 2020 Kamali, A ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This study presents a bilayer structure as a skin scaffold comprised of an electrospun sheet layer made of polycaprolactone and polyvinil alcohol and a porous hydrogel layer made of chitosan and gelatin. The hydrogel layer was fabricated by employing the freeze-gelation technique. The bilayer structure was achieved by pouring the hydrogel solution on the electrospun sheet at the bottom of a mold followed by the freeze-gelation technique to obtain a porous structure in the hydrogel. The hydrogel and hydrogel-electrospun samples were characterized by scanning electron microscopy, swelling, tensile strength, in vitro and in vivo analyses. From a mechanical strength standpoint, the combination... 

    Biohybrid oxidized alginate/myocardial extracellular matrix injectable hydrogels with improved electromechanical properties for cardiac tissue engineering

    , Article International Journal of Biological Macromolecules ; Volume 180 , 2021 , Pages 692-708 ; 01418130 (ISSN) Mousavi, A ; Mashayekhan, S ; Baheiraei, N ; Pourjavadi, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Injectable hydrogels which mimic the physicochemical and electromechanical properties of cardiac tissue is advantageous for cardiac tissue engineering. Here, a newly-developed in situ forming double-network hydrogel derived from biological macromolecules (oxidized alginate (OA) and myocardial extracellular matrix (ECM)) with improved mechanical properties and electrical conductivity was optimized. 3-(2-aminoethyl amino) propyltrimethoxysilane (APTMS)-functionalized reduced graphene oxide (Amine-rGO) was added to this system with varied concentrations to promote electromechanical properties of the hydrogel. Alginate was partially oxidized with an oxidation degree of 5% and the resulting OA... 

    Fabrication and characterization of an injectable reinforced composite scaffold for cartilage tissue engineering: An in vitro study

    , Article Biomedical Materials (Bristol) ; Volume 16, Issue 4 , 2021 ; 17486041 (ISSN) Khozaei Ravari, M ; Mashayekhan, S ; Zarei, F ; Sayyahpour, F. A ; Taghiyar, L ; Eslaminejad, M. B ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    There are limitations in current medications of articular cartilage injuries. Although injectable bioactive hydrogels are promising options, they have decreased biomechanical performance. Researchers should consider many factors when providing solutions to overcome these challenges. In this study, we created an injectable composite hydrogel from chitosan and human acellular cartilage extracellular matrix (ECM) particles. In order to enhance its mechanical properties, we reinforced this hydrogel with microporous microspheres composed of the same materials as the structural building blocks of the scaffold. Articular cartilage from human donors was decellularized by a combination of physical,... 

    Fabrication and characterization of biaxially electrospun collagen/alginate nanofibers, improved with Rhodotorula mucilaginosa sp. GUMS16 produced exopolysaccharides for wound healing applications

    , Article International Journal of Biological Macromolecules ; Volume 196 , 2022 , Pages 194-203 ; 01418130 (ISSN) Ashraf, S. S ; Parivar, K ; Hayati Roodbari, N ; Mashayekhan, S ; Amini, N ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Fabrication of scaffolds with enhanced mechanical properties and desirable cellular compatibility is critical for numerous tissue engineering applications. This study was aimed at fabrication and characterization of a nanofiber skin substitute composed of collagen (Col)/sodium alginate (SA)/ polyethylene oxide (PEO)/Rhodotorula mucilaginosa sp. GUMS16 produced exopolysaccharides (EPS) were prepared using the biaxial electrospinning technique. This study used collagen extracted from the bovine tendon as a natural scaffold, sodium alginate as an absorber of excess wound fluids, and GUMS16 produced exopolysaccharides as an antioxidant. Collagen was characterized using FTIR and EDS analyses. The... 

    Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 7, Issue 1 , Feb , 2011 , Pages 22-39 ; 15499634 (ISSN) Simchi, A ; Tamjid, E ; Pishbin, F ; Boccaccini, A. R ; Sharif University of Technology
    Abstract
    This review covers the most recent developments of inorganic and organic-inorganic composite coatings for orthopedic implants, providing the interface with living tissue and with potential for drug delivery to combat infections. Conventional systemic delivery of drugs is an inefficient procedure that may cause toxicity and may require a patient's hospitalization for monitoring. Local delivery of antibiotics and other bioactive molecules maximizes their effect where they are required, reduces potential systemic toxicity and increases timeliness and cost efficiency. In addition, local delivery has broad applications in combating infection-related diseases. Polymeric coatings may present some... 

    Cold atmospheric plasma modification and electrical conductivity induction in gelatin/polyvinylidene fluoride nanofibers for neural tissue engineering

    , Article Artificial Organs ; Volume 46, Issue 8 , 2022 , Pages 1504-1521 ; 0160564X (ISSN) Sahrayi, H ; Hosseini, E ; Ramazani Saadatabadi, A ; Atyabi, S ; Bakhshandeh, H ; Mohamadali, M ; Aidun, A ; Farasati Far, B ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Background: This research follows some investigations through neural tissue engineering, including fabrication, surface treatment, and evaluation of novel self-stimuli conductive biocompatible and degradable nanocomposite scaffolds. Methods: Gelatin as a biobased material and polyvinylidene fluoride (PVDF) as a mechanical, electrical, and piezoelectric improvement agent were co-electrospun. In addition, polyaniline/graphene (PAG) nanoparticles were synthesized and added to gelatin solutions in different percentages to induce electrical conductivity. After obtaining optimum PAG percentage, cold atmospheric plasma (CAP) treatment was applied over the best samples by different plasma variable... 

    A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications

    , Article Bio-Design and Manufacturing ; Volume 5, Issue 2 , 2022 , Pages 371-395 ; 20965524 (ISSN) Sarraf, M ; Rezvani Ghomi, E ; Alipour, S ; Ramakrishna, S ; Liana Sukiman, N ; Sharif University of Technology
    Springer  2022
    Abstract
    Abstract: Commercially pure titanium and titanium alloys have been among the most commonly used materials for biomedical applications since the 1950s. Due to the excellent mechanical tribological properties, corrosion resistance, biocompatibility, and antibacterial properties of titanium, it is getting much attention as a biomaterial for implants. Furthermore, titanium promotes osseointegration without any additional adhesives by physically bonding with the living bone at the implant site. These properties are crucial for producing high-strength metallic alloys for biomedical applications. Titanium alloys are manufactured into the three types of α, β, and α + β. The scientific and clinical... 

    Silica nanoparticle surface chemistry: An important trait affecting cellular biocompatibility in two and three dimensional culture systems

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 182 , 2019 ; 09277765 (ISSN) Hasany, M ; Taebnia, N ; Yaghmaei, S ; Shahbazi, M. A ; Mehrali, M ; Dolatshahi Pirouz, A ; Arpanaei, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Great advantages bestowed by mesoporous silica nanoparticles (MSNs) including high surface area, tailorable pore diameter and surface chemistry, and large pore volume render them as efficient tools in biomedical applications. Herein, MSNs with different surface chemistries were synthesized and investigated in terms of biocompatibility and their impact on the morphology of bone marrow-derived mesenchymal stem cells both in 2D and 3D culture systems. Bare MSNs (BMSNs) were synthesized by template removing method using tetraethylorthosilicate (TEOS) as a precursor. The as-prepared BMSNs were then used to prepare amine-functionalized (AMSNs), carboxyl-functionalized (CMSNs) and polymeric...