Loading...
Search for: biomaterials
0.01 seconds
Total 100 records

    Gold-based hybrid nanostructures: more than just a pretty face for combinational cancer therapy

    , Article Biophysical Reviews ; Volume 14, Issue 1 , 2022 , Pages 317-326 ; 18672450 (ISSN) Khafaji, M ; Bavi, O ; Zamani, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    The early diagnosis together with an efficient therapy of cancer is essential to treat cancer patients and to enhance their quality of life. The use of nanostructures, as a newer technology, has demonstrated proven benefits as efficient cancer theranostic agents in numerous recent studies. Having a tunable surface plasmon resonance, gold nanostructures have been the subject of many recent studies as excellent imaging and photothermal therapy agents. However, the potential cytotoxicity and weak stability of gold nanostructures necessitate further modifications using biocompatible materials for biological applications. Based on the composition of the final structure, these gold-based hybrid... 

    Biocompatibility, osseointegration, antibacterial and mechanical properties of nanocrystalline Ti-Cu alloy as a new orthopedic material

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 189 , May , 2020 Moniri Javadhesari, S ; Alipour, S ; Akbarpour, M. R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The demands for high-performance biomaterials are driving the development of new metallic alloys with improved mechanical and biological responses. In this study, a nanocrystalline Ti-Cu intermetallic alloy was prepared by a powder metallurgy route, and its application as an orthopedic material was evaluated by the microstructural, mechanical, corrosion, antibacterial, cytotoxicity and osseointegration examinations. Microstructural characterization revealed the formation of TiCu and Ti2Cu3 as major phases with 23 nm grain size in the structure of the alloy. The synthesized alloy exhibited ultra-high hardness of 10 GPa, acceptable toughness of 8.14 MPam1/2, a ∼98 % anti-bacterial rate against... 

    Additive manufacturing of bioactive glass biomaterials

    , Article Methods ; Volume 208 , 2022 , Pages 75-91 ; 10462023 (ISSN) Simorgh, S ; Alasvand, N ; Khodadadi, M ; Ghobadi, F ; Malekzadeh Kebria, M ; Brouki Milan, P ; Kargozar, S ; Baino, F ; Mobasheri, A ; Mozafari, M ; Sharif University of Technology
    Academic Press Inc  2022
    Abstract
    Tissue engineering (TE) and regenerative medicine have held great promises for the repair and regeneration of damaged tissues and organs. Additive manufacturing has recently appeared as a versatile technology in TE strategies that enables the production of objects through layered printing. By applying 3D printing and bioprinting, it is now possible to make tissue-engineered constructs according to desired thickness, shape, and size that resemble the native structure of lost tissues. Up to now, several organic and inorganic materials were used as raw materials for 3D printing; bioactive glasses (BGs) are among the most hopeful substances regarding their excellent properties (e.g., bioactivity... 

    Design and Fabrication of Engineered Biomaterials for Tissue Engineering Applications such as Cardiovascular System

    , M.Sc. Thesis Sharif University of Technology Khayat Norouzi, Sara (Author) ; Shamlou, Amir (Supervisor)
    Abstract
    Cardiovascular diseases are the leading cause of death all over the world, even more common than cancers. The first reason of mortality in Iran according to statistics is the occlusion of coronary arteries. Unfortunately almost one third of patients doesn’t have enough blood vessels to be used in the bypass surgery and need artificial vessels. These artificial blood vessels with small diameters (less than 6 mm) will fail quickly. As a result there is an increasing demand for tissue engineered blood vessels which are capable of enduring high blood pressures. An artificial blood vessel should mimic both structure and mechanical properties of the real one. Blood vessels have layered structures,... 

    Antioxidant, antifungal, water binding, and mechanical properties of poly(vinyl alcohol) film incorporated with essential oil as a potential wound dressing material

    , Article Journal of Applied Polymer Science ; Vol. 131, issue. 20 , 2014 Kavoosi, G ; Nateghpoor, B ; Dadfar, S. M. M ; Dadfar, S. M. A ; Sharif University of Technology
    Abstract
    In this study, the properties of poly (vinyl alcohol)(PVA) films incorporated with Zataria multiflora essential oil (ZMO) as a potential antioxidant/antibacterial material was investigated. PVA films were prepared from PVA solutions (2% w/v) containing different concentrations of ZMO. Water solubility, moisture absorption, water swelling, and water vapor permeability for pure PVA films were 57 ± 1.1, 99 ± 3.2%, 337 ± 8%, and 0.453 ± 0.015 g mm/m2 h, respectively. Incorporation of ZMO into PVA films caused a significant decrease in water swelling and moisture absorption and increase in solubility and water vapor permeability. Tensile strength, elastic modulus, and elongation at break for pure... 

    Multi-objective design optimization of functionally graded material for the femoral component of a total knee replacement

    , Article Materials and Design ; Vol. 53, Issue. 1 , 2014 , pp. 159-173 ; ISSN: 0895-7177 Bahraminasab, M ; Sahari, B. B ; Edwards, K. L ; Farahmand, F ; Hong, T. S ; Arumugam, M ; Jahan, A ; Sharif University of Technology
    Abstract
    The optimal design of complex systems in engineering requires pursuing rigorous mathematical modeling of the system's behavior as a function of a set of design variables to achieve goal-oriented design. Despite the success of current knee implants, the limited life span remains the main concern of this complex system. The mismatch between the properties of engineered biomaterials and those of biological materials leads to insufficient bonding with bone, stress shielding effects and wear problems (i.e. aseptic loosening). The use of a functionally graded material (FGM) for the femoral component of knee implants is attractive because the properties can be designed to vary in a certain pattern... 

    Hydrophobic nanocarriers embedded in a novel dual-responsive poly(N-isopropylacrylamide)/chitosan/(cyclodextrin) nanohydrogel

    , Article Journal of Polymer Research ; Volume 20, Issue 10 , 2013 ; 1572-8935 (Online ISSN) Bashari, A ; Hemmatinejad, N ; Pourjavadi, A ; Sharif University of Technology
    2013
    Abstract
    The incorporation of modified β-cyclodextrin (β-CD) into a poly(N-isopropylacrylamide) (PNIPAAm)/chitosan (PNCS) nanohydrogel was studied. β-CD was functionalized with acrylic groups, with different numbers of vinyl bonds added per β-CD molecule. The surfactant-free dispersion polymerization (SFDP) semi-batch method was used to synthesize the nanohydrogel. Increasing the number of vinyl groups per β-CDAC (β-CD acrylate) molecule induced the formation of smaller nanogels with diameters ranging from 142 to 68 nm. The cyclodextrin-modified dual-responsive nanogels obtained presented an LCST (lower critical solution temperature) in aqueous medium at around 31 C. The incorporation of β-CDAC into... 

    Effect of electrolyte concentration on microstructure and properties of micro arc oxidized hydroxyapatite/titania nanostructured composite

    , Article Materials Science and Engineering C ; Volume 33, Issue 5 , 2013 , Pages 2555-2561 ; 09284931 (ISSN) Abbasi, S ; Golestani Fard, F ; Mirhosseini, S. M. M ; Ziaee, A ; Mehrjoo, M ; Sharif University of Technology
    2013
    Abstract
    Micro arc oxidation was employed to grow TiO2/hydroxyapatite composite layer on titanium substrate. The correlation between electrolyte concentration, diameter and density of the pores in fabricated layers was investigated. Therefore, the effect of electrolyte concentration on composition and morphology of grown layers was studied using SEM, EDX, XRD and XPS techniques. Samples were coated in electrolytes containing 5, 10 and 15 g/l calcium acetate and 1, 3 and 5 g/l β-glycerophosphate, at optimized voltage for 3 min. Pore size variations obey a similar pattern by the addition of both calcium acetate and β-glycerophosphatein various concentrations based on SEM observations. However,... 

    Synthesis and characterisation of β-tricalcium phosphate coating on zirconia toughened alumina by biomimetic method

    , Article Advances in Applied Ceramics ; Volume 112, Issue 3 , 2013 , Pages 140-145 ; 17436753 (ISSN) Esfahani, H ; Nemati, A ; Salahi, E ; Sharif University of Technology
    2013
    Abstract
    The present work studied bioactive coatings on the surface of ceramic biomaterials. Zirconia toughened alumina (ZTA) composites containing 15 mol.-%. Partially stabilised zirconia was prepared after 1 h sintering at 1550°C. Apatite layers were then coated onto the surfaces of composites by the biomimetic method using 1·5-2 multiply concentrations of simulated body fluid (SBF). Before treatment in SBFs, a sodium silicate layer was employed as nucleating agent to induce the formation of a calcium phosphate layer. The effect of immersion time on the morphology of the precipitate was monitored with a scanning electron microscope. X dot maps revealed that there is a relationship between... 

    Synthesis and characterization of sol-gel derived hydroxyapatite-bioglass composite nanopowders for biomedical applications

    , Article Journal of Biomimetics, Biomaterials, and Tissue Engineering ; Volume 12, Issue 1 , 2012 , Pages 51-57 ; 16621018 (ISSN) Adibnia, S ; Nemati, A ; Fathi, M. H ; Baghshahi, S ; Sharif University of Technology
    2012
    Abstract
    The main purpose of this study is to prepare and characterize hydroxyapatite (HA)-10%wt bioglass (BG) composite nanopowders and its bioactivity. Composites of hydroxyapatite with synthesized bioglass are prepared at various temperatures. Suitable calcination temperature is chosen by evaluating of the phase composition. X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM) techniques are utilized to characterize the prepared nanopowders. The bioactivity of the prepared composite samples is evaluated in an in vitro study by immersion of samples in simulated body fluid (SBF) for predicted time. Fourier transformed infrared (FTIR) spectroscopy and... 

    Physicochemical and biological properties of electrodeposited graphene oxide/chitosan films with drug-eluting capacity

    , Article Carbon ; Volume 84, Issue C , April , 2015 , Pages 91-102 ; 00086223 (ISSN) Ordikhani, F ; Ramezani Farani, M ; Dehghani, M ; Tamjid, E ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this study, novel graphene oxide/chitosan nanocomposite coatings with long term drugeluting potential are presented. The coatings are fabricated by the facile and reproducible electrophoretic deposition technique. Analysis of the prepared films shows that the graphene oxide nanosheets are exfoliated in the chitosan matrix. Fourier-transform infrared spectrometry reveals polymer attachment to the carboxylic bonds of graphene oxide, providing a strong interaction and exfoliation of the nanolayers. In vitro viability assay by human osteosarcoma cells (MG-63) demonstrates that the nanocomposite films are highly biocompatible up to 30 wt% graphene oxide, but at higher concentrations a slight... 

    Thermoplastic starch/ethylene vinyl alcohol/forsterite nanocomposite as a candidate material for bone tissue engineering

    , Article Materials Science and Engineering C ; Volume 69 , 2016 , Pages 301-310 ; 09284931 (ISSN) Mahdieh, Z ; Bagheri, R ; Eslami, M ; Amiri, M ; Shokrgozar, M. A ; Mehrjoo, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Recently, biodegradable polymers such as starch based blends have been well renowned in the biomedical field. Studies have considered them suitable for bone scaffolds, bone cements, tissue engineering scaffolds, drug delivery systems and hydrogels. The aim of this study was to synthesize nanocomposite biomaterial consisting a blend of thermoplastic starch and ethylene vinyl alcohol as the polymer matrix, and nano-structured forsterite as the ceramic reinforcing phase for bone tissue engineering applications. Furthermore, vitamin E was applied as a thermal stabilizer during melt compounding. Extrusion and injection molding were incorporated for melt blending and shaping of samples,... 

    Effect of gamma ray on magnetic bio-nanocomposite

    , Article Materials Chemistry and Physics ; Volume 170 , 2016 , Pages 71-76 ; 02540584 (ISSN) Asadi, S ; Frounchi, M ; Dadbin, S ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Magnetic polyvinyl alcohol (M-PVA) films were prepared via solution casting filled with surface modified superparamagnetic nanoparticles (M-NPs). The M-NPs were coated with citric acid during synthesis. The chemical interaction between the citric acid and M-NPs was confirmed by Fourier transform infrared spectroscopy (FTIR). The average hydrodynamic diameter of M-NPs was 19.7 nm measured by dynamic light scattering DLS and appeared almost spherical in scanning electron microscopy (SEM). The M-NPs were uniformly dispersed in polyvinyl alcohol (PVA) matrix and showed high optical transparency with good mechanical properties. M-PVA hydrogels were synthesized using gamma irradiation. The... 

    Influence of Fe3O4 nanoparticles in hydroxyapatite scaffolds on proliferation of primary human fibroblast cells

    , Article Journal of Materials Engineering and Performance ; 2016 , Pages 1-9 ; 10599495 (ISSN) Maleki Ghaleh, H ; Aghaie, E ; Nadernezhad, A ; Zargarzadeh, M ; Khakzad, A ; Shakeri, M. S ; Beygi Khosrowshahi, Y ; Siadati, M. H ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    Modern techniques for expanding stem cells play a substantial role in tissue engineering: the raw material that facilitates regeneration of damaged tissues and treats diseases. The environmental conditions and bioprocessing methods are the primary determinants of the rate of cultured stem cell proliferation. Bioceramic scaffolds made of calcium phosphate are effective substrates for optimal cell proliferation. The present study investigates the effects of two bioceramic scaffolds on proliferating cells in culture media. One scaffold was made of hydroxyapatite and the other was a mixture of hydroxyapatite and ferromagnetic material (Fe3O4 nanoparticles). Disk-shaped (10 mm × 2 mm) samples of... 

    Physicochemical and antibacterial properties of chitosan-polyvinylpyrrolidone films containing self-organized graphene oxide nanolayers

    , Article Journal of Applied Polymer Science ; Volume 133, Issue 11 , 2016 ; 00218995 (ISSN) Mahmoudi, N ; Ostadhossein, F ; Simchi, A ; Sharif University of Technology
    John Wiley and Sons Inc  2016
    Abstract
    Chitosan films have a great potential to be used for wound dressing and food-packaging applications if their physicochemical properties including water vapor permeability, optical transparency, and hydrophilicity are tailored to practical demands. To address these points, in this study, chitosan (CS) was combined with polyvinylpyrrolidone (PVP) and graphene oxide (GO) nanosheets (with a thickness of ∼1 nm and lateral dimensions of few micrometers). Flexible and transparent films with a high antibacterial capacity were prepared by solvent casting methods. By controlling the evaporation rate of the utilized solvent (1 vol % acidic acid in deionized water), self-organization of GO in the... 

    Feasibility of using bulk metallic glass for self-expandable stent applications

    , Article Journal of Biomedical Materials Research - Part B Applied Biomaterials ; Volume 105, Issue 7 , 2017 , Pages 1874-1882 ; 15524973 (ISSN) Praveen Kumar, G ; Jafary Zadeh, M ; Tavakoli, R ; Cui, F ; Sharif University of Technology
    Abstract
    Self-expandable stents are widely used to restore blood flow in a diseased artery segment by keeping the artery open after angioplasty. Despite the prevalent use of conventional crystalline metallic alloys, for example, nitinol, to construct self-expandable stents, new biomaterials such as bulk metallic glasses (BMGs) are being actively pursued to improve stent performance. Here, we conducted a series of analyses including finite element analysis and molecular dynamics simulations to investigate the feasibility of using a prototypical Zr-based BMG for self-expandable stent applications. We model stent crimping of several designs for different percutaneous applications. Our results indicate... 

    A comprehensive evaluation between the efficiency of different treatments in modifying the properties and behavior of magnesium alloys as degradable biomaterials

    , Article Materials and Corrosion ; Volume 68, Issue 9 , 2017 , Pages 995-1003 ; 09475117 (ISSN) Homayun, B ; Afshar, A ; Sharif University of Technology
    Abstract
    The addition of alloying elements to magnesium leads to microstructural refinement and improves its properties. However, this strategy is accompanied by another concurrent phenomenon − that is − intergranular segregation and the formation of secondary phases in grain boundaries, deteriorating the properties. In this work, the efficacy of two main factors on modifying the mechanical properties and corrosion behavior of Mg-4Zn-1Al-0.2Ca alloy was investigated separately: 1) dissolution of secondary phases; and 2) grain refinement. Based on the results, heat treatment of the as-cast alloy can increase the UTS from 174.4 to 213.2 MPa, decrease the corrosion current density from 81 to 49 μA/cm2,... 

    Drug delivery systems and materials for wound healing applications

    , Article Advanced Drug Delivery Reviews ; Volume 127 , 2018 , Pages 138-166 ; 0169409X (ISSN) Saghazadeh, S ; Rinoldi, C ; Schot, M ; Saheb Kashaf, S ; Sharifi, F ; Jalilian, E ; Nuutila, K ; Giatsidis, G ; Mostafalu, P ; Derakhshandeh, H ; Yue, K ; Swieszkowski, W ; Memic, A ; Tamayol, A ; Khademhosseini, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Chronic, non-healing wounds place a significant burden on patients and healthcare systems, resulting in impaired mobility, limb amputation, or even death. Chronic wounds result from a disruption in the highly orchestrated cascade of events involved in wound closure. Significant advances in our understanding of the pathophysiology of chronic wounds have resulted in the development of drugs designed to target different aspects of the impaired processes. However, the hostility of the wound environment rich in degradative enzymes and its elevated pH, combined with differences in the time scales of different physiological processes involved in tissue regeneration require the use of effective drug... 

    Facile synthesis of extremely biocompatible double-network hydrogels based on chitosan and poly(vinyl alcohol) with enhanced mechanical properties

    , Article Journal of Applied Polymer Science ; Volume 135, Issue 7 , 2018 ; 00218995 (ISSN) Pourjavadi, A ; Tavakoli, E ; Motamedi, A ; Salimi, H ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    An easy and ecofriendly method for designing double-network (DN) hydrogels based on chitosan and poly(vinyl alcohol) (PVA) with high mechanical performance is described. When covalent bonds in the networks are used as crosslinking agents in the achievement of a higher mechanical strength, the irreversible deformation of these hydrogels after a large force is applied is still one of the most important obstacles. To overcome this problem, we used physical crosslinking for both networks. The mechanical strength, surface morphology, and cytotoxicity of the films were studied by tensile testing, scanning electron microscopy analysis, and an MTT assay. The synthesized chitosan–PVA DN hydrogels... 

    Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review

    , Article Polymer Reviews ; Volume 58, Issue 1 , 2018 , Pages 164-207 ; 15583724 (ISSN) Hajiali, F ; Tajbakhsh, S ; Shojaei, A ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    Polycaprolactone (PCL) is a bioresorbable and biocompatible polymer that has been widely used in long-term implants and controlled drug release applications. However, when it comes to tissue engineering, PCL suffers from some shortcomings such as slow degradation rate, poor mechanical properties, and low cell adhesion. The incorporation of calcium phosphate-based ceramics and bioactive glasses into PCL has yielded a class of hybrid biomaterials with remarkably improved mechanical properties, controllable degradation rates, and enhanced bioactivity that are suitable for bone tissue engineering. This review presents a comprehensive study on recent advances in the fabrication and properties of...