Loading...
Search for: adsorption
0.009 seconds
Total 559 records

    Uranium recovery from UCF liquid waste by nanoporous MCM-41: Breakthrough capacity and elution behavior studies

    , Article Research on Chemical Intermediates ; Volume 39, Issue 3 , 2013 , Pages 951-959 ; 09226168 (ISSN) Mousavi, S. M ; Tavakoli, H ; Samadfam, M ; Semnani, F ; Asadi, Z ; Sepehrian, H ; Sharif University of Technology
    2013
    Abstract
    Adsorption and recovery of uranium by nanoporous MCM-41 from aqueous solutions (synthetic solution and uranium conversion facility liquid waste) were investigated by use of a fixed-bed column (1.2 cm diameter and 3.0 cm height). Adsorption was carried out at flow rates 0.2 and 0.5 mL min-1, which correspond to retention times of 10 and 6 min. The maximum breakthrough capacity for uranium ions was achieved by use of nanoporous MCM-41 at the optimum pH of 3.6 and flow rate 0.2 mL min-1 (61.95 μg g-1). The Thomas and Yan models were applied to the experimental data, by use of linear regression, to determine the characteristics of the column for process design. The breakthrough curves calculated... 

    The enhancing power of iodide on corrosion prevention of mild steel in the presence of a synthetic-soluble Schiff-base: Electrochemical and surface analyses

    , Article Electrochimica Acta ; Volume 55, Issue 20 , August , 2010 , Pages 6058-6063 ; 00134686 (ISSN) Lashgari, M ; Arshadi, M. R ; Miandari, S ; Sharif University of Technology
    Abstract
    The inhibitory action of N,N′-1,3-propylen-bis(3- methoxysalicylidenimine) {PMSI} on mild steel corrosion in sulfuric acid medium was investigated through electrochemical methods and evaluations based on infrared spectroscopy and scanning electron micrographs. The studies revealed that the molecule is a good mixed-type inhibitor (mostly anodic), acts as a multi-dentate ligand and repels the corrosive agents by hydrophobic forces. Its adsorption on metal surface has a physicochemical nature and obeys the Langmuir isotherm. At a critical (optimum) concentration, an anomalous inhibitory behavior was observed and interpreted at microscopic level by means of desorption/adsorption process and... 

    The effects of multi-walled carbon nanotubes graphitization treated with different atmospheres and electrolyte temperatures on electrochemical hydrogen storage

    , Article Electrochimica Acta ; Volume 55, Issue 16 , June , 2010 , Pages 4700-4705 ; 00134686 (ISSN) Reyhani, A ; Nozad Golikand, A ; Mortazavi, S. Z ; Irannejad, L ; Moshfegh, A. Z ; Sharif University of Technology
    2010
    Abstract
    Using multi-walled carbon nanotubes (MWCNTs), the present study focuses on their electrochemical hydrogen storage capacities. The results showed that the hydrogen desorption process is composed of two steps with voltages around -0.75 and -0.15 V. Hydrogen adsorption at -0.15 V took place at temperatures above 30 °C, and the amount of energy required for adsorbing hydrogen was 1.68 eV. The hydrogen storage capacity increased with increasing electrolyte temperature from 30 to 60 °C in both steps. The hydrogen storage capacity of the MWCNTs treated at different atmospheres showed that the decrease in the graphitization of MWCNTs led to the increase in hydrogen adsorption. The results also... 

    Kinetics of oxygen adsorption on ZnS nanoparticles synthesized by precipitation process

    , Article Materials Science- Poland ; Volume 34, Issue 2 , 2016 , Pages 260-265 ; 20831331 (ISSN) Ahmadi, R ; Sadrnezhad, S. K ; Namivandi Zangeneh, R ; Oghabian, M. A ; Sharif University of Technology
    Walter de Gruyter GmbH 
    Abstract
    ZnS nanoparticles were synthesized through a one-step precipitation process. Effect of time and temperature on the formation reaction was investigated. The synthesized samples were characterized by X-ray diffraction (XRD), ultraviolet (UV) visible absorption and photoluminescence (PL) spectrophotometry. Based on XRD and UV-Vis data, the particles produced at 70 °C had a mean particle size of about 5 nm. Increasing time and temperature of the synthesis reaction resulted in photoluminescence intensification. PL spectroscopy helped understanding the adsorption kinetics of oxygen on ZnS nanoparticles during the precipitation synthesis process. Fabrication of ZnS structures with appropriate... 

    Adsorption of sodium dodecyl benzene sulfonate onto carbonate rock: Kinetics, equilibrium and mechanistic study

    , Article Journal of Dispersion Science and Technology ; 2017 , Pages 1-13 ; 01932691 (ISSN) Hemmati, N ; Tabzar, A ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    In this study, kinetics, equilibrium, and mechanisms of SDBS adsorption onto carbonate rock in presence/absence of alkaline/electrolyte, which is not well discussed in the available literature, is analyzed through batch experiments. Analysis of kinetic data showed that adsorption rate of SDBS onto carbonate is controlled by both boundary layer and intraparticle diffusion, also adsorption kinetics meets pseudo second-order model. The coefficient of kinetic model is a linear function of initial and equilibrium concentrations. The adsorption isotherm experiences four distinct regions, with a rising trend in the first regions until reaching to a maximum after which decreases slightly, as the... 

    Rapid biosorption of methylene blue by in situ cellulose-grafted poly 4-hydroxybenzoic acid magnetic nanohybrid: multivariate optimization and isotherm study

    , Article Polymer Bulletin ; 2017 , Pages 1-14 ; 01700839 (ISSN) Alijani, H ; Beyki, M. H ; Kaveh, R ; Fazli, Y ; Sharif University of Technology
    Abstract
    In this research, an efficient biosorption system was developed for methylene blue adsorption over in situ hydrothermally synthesized magnetite 4-hydroxybenzoic acid cellulose nanohybrid. The material was characterized with EDX, VSM, FT-IR, FESEM, and TEM techniques. Results showed that the nanohybrid is a micro-cluster composed of stacked nanoscale particles. Multivariate optimization with Box–Behnken design was used to evaluate effective parameters on adsorption and their interaction. Results showed that pH, shacking time, and adsorbent dosage are effective parameters on MB adsorption. Adsorption rate is fast with equilibrium time of 5.5 min. Isotherm study revealed that the adsorption... 

    Adsorption of pollutant cations from their aqueous solutions on graphitic carbon nitride explored by density functional theory

    , Article Journal of Molecular Liquids ; Volume 260 , 15 June , 2018 , Pages 423-435 ; 01677322 (ISSN) Safdari, F ; Shamkhali, A. N ; Tafazzoli, M ; Parsafar, G ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this study, adsorption of important pollutant cations on the surface of graphitic carbon nitride (g-C3N4) was investigated by density functional theory. The calculations indicated that N6 cavity surrounded by triazine units is the most probable adsorption site on this surface. The structural optimizations also predicted a planar surface for Cr3+, and Ni2+/g-C3N4 systems while the structure of the surface for other systems indicated a considerable distortion with strong dependency on the cation size. Also, g-C3N4 surface exhibited the high adsorption energies for Cr3+, As3+, and Sb3+ ions in the gas phase. However, formation energies of the metal-aquo complexes of these cations indicated... 

    Adsorption of sodium dodecyl benzene sulfonate onto carbonate rock: Kinetics, equilibrium and mechanistic study

    , Article Journal of Dispersion Science and Technology ; Volume 39, Issue 5 , 2018 , Pages 687-699 ; 01932691 (ISSN) Hemmati, N ; Tabzar, A ; Ghazanfari, M. H ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    In this study, kinetics, equilibrium, and mechanisms of SDBS adsorption onto carbonate rock in presence/absence of alkaline/electrolyte, which is not well discussed in the available literature, is analyzed through batch experiments. Analysis of kinetic data showed that adsorption rate of SDBS onto carbonate is controlled by both boundary layer and intraparticle diffusion, also adsorption kinetics meets pseudo second-order model. The coefficient of kinetic model is a linear function of initial and equilibrium concentrations. The adsorption isotherm experiences four distinct regions, with a rising trend in the first regions until reaching to a maximum after which decreases slightly, as the... 

    Mathematical model and energy analysis of ethane dehydration in two-layer packed-bed adsorption

    , Article Particuology ; Volume 47 , 2019 , Pages 33-40 ; 16742001 (ISSN) Tavan, Y ; Hosseini, S. H ; Ahmadi, G ; Olazar, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    The 3A zeolites are excellent adsorbents for industrial-scale gas dehydration because of the low energy required for regeneration and ease of operation. A computational study of the dehydration of an industrial feed stream containing ethane and water was performed using an in-house code that included an appropriate equilibrium adsorption isotherm. The validated computational model was used to examine the impact of particle size on the process dynamics and the corresponding pressure drop. The water concentration along the adsorption column was also investigated. To increase the process capacity, the packed adsorption bed was divided into two distinct layers, which were operated with different... 

    Highly efficient SO3Ag-functionalized MIL-101(Cr) for adsorptive desulfurization of the gas stream: Experimental and DFT study

    , Article Chemical Engineering Journal ; Volume 363 , 2019 , Pages 73-83 ; 13858947 (ISSN) Pourreza, A ; Askari, S ; Rashidi, A ; Seif, A ; Kooti, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this research, an adsorbent with manifold interplay sites for the adsorption of sulfur components is developed in a silver ion functionalized Cr3+ based metal-organic framework (MIL-101(Cr)-SO3Ag). The adsorption performance of MIL-101(Cr), MIL-101(Cr)-SO3H, and MIL-101(Cr)-SO3Ag was evaluated in dynamic adsorption system in terms of its adsorption capacity. MIL-101(Cr)-SO3Ag could interact with H2S through multiple ways which performed about 4 times higher adsorption capacity (96.75 mg/g) rather than MIL-101(Cr); further, the high adsorption capacity of MIL-101(Cr)-SO3Ag was almost unchanged after five successive adsorption–desorption cycles, making it a potential adsorbent for an... 

    Towards developing efficient metalloporphyrin-based hybrid photocatalysts for CO2reduction; an: ab initio study

    , Article Physical Chemistry Chemical Physics ; Volume 22, Issue 40 , 2020 , Pages 23128-23140 Ostovan, A ; Papior, N ; Zahedi, M ; Moshfegh, A. Z ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    A series of thiophene-based donor-acceptor-donor (D-A-D) oligomer substituted metalloporphyrins (MPors) with different 3d central metal-ions (M = Co, Ni, Cu, and Zn) were systematically investigated to screen efficient hybrid photocatalysts for CO2 reduction based on density functional theory (DFT) and time-dependent DFT simulations. Compared with base MPors, the newly designed hybrid photocatalysts have a lower bandgap energy, stronger and broader absorption spectra, and enhanced intermolecular charge transfer, exciton lifetime, and light-harvesting efficiency. Then, the introduction of D-A-D electron donor (ED) groups into the meso-positions of MPors is a promising method for the... 

    Preparation and characterization of porous chitosan–based membrane with enhanced copper ion adsorption performance

    , Article Reactive and Functional Polymers ; Volume 154 , 2020 Sahebjamee, N ; Soltanieh, M ; Mousavi, S. M ; Heydarinasab, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Since compactness is a disadvantageous characteristic of chitosan-based membranes, two different methods were used to increase the porosity of the chitosan/poly(vinyl alcohol)/polyethyleneimine (CS/PVA/PEI) membrane, and its effect on copper ion adsorption was studied. In the first method, selective dissolution of poly(vinyl pyrrolidone) (PVP) induced porosity and for the second method, a mixed solvent system, which consists of a volatile solvent (acetone), was used to improve the porosity of the membrane. Different percentages of PVP showed inadequate performance, but acetone improved the operation efficiency of adsorption. The membranes were characterized by the analysis of FT-IR, SEM,... 

    Superior anti-biofouling properties of mPEG-modified polyurethane networks via incorporation of a hydrophobic dangling chain

    , Article Progress in Organic Coatings ; Volume 158 , September , 2021 ; 03009440 (ISSN) Golmohammadian Tehrani, A ; Makki, H ; Ghaffarian Anbaran, R ; Vakili, H ; Ghermezcheshme, H ; Zandi, N ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    PEG-modification is a proven method to enhance the hydrophilicity, protein resistance, and anti-biofouling properties of polymer coatings. It is considered as the gold standard interfacial modification technique such that the higher PEG content, the higher hydrophilicity, and lower protein adsorption, i.e., the initial stage of the biofouling process. Nevertheless, increasing the PEG content causes a higher water uptake, which declines the polymer mechanical strength and increases its hydrolytic degradation rate. Thus, an effective strategy to produce a limited-water-absorbing PEG-modified polymer is to force the majority of PEG molecules to migrate towards the interfacial region while the... 

    Facile synthesis of polyaniline@UiO-66 nanohybrids for efficient and rapid adsorption of methyl orange from aqueous media

    , Article Industrial and Engineering Chemistry Research ; Volume 61, Issue 32 , Volume 61, Issue 32 , 2022 , Pages 11735-11746 ; 08885885 (ISSN) Mirzaei, K ; Jafarpour, E ; Shojaei, A ; Molavi, H ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    A series of UiO-66/polyaniline (UiO-66/PANI) nanohybrids with various UiO-66 to aniline weight ratios ranging from 0.01 to 0.1 was synthesized using an in situ polymerization technique. The adsorption behavior of the neat PANI nanofiber network and the synthesized nanohybrids was examined toward anionic methyl orange (MO) dye from aqueous media. It was realized that the maximum adsorption capacity of PANI (229 mg/g) increases steadily by increasing the UiO-66 content in the nanohybrid up to 7 wt % at 426 mg/g, and then, it approximately levels off at 432 mg/g for the nanohybrid sample containing 10 wt % UiO-66, that is, UP10. Based on a thorough characterization, it was shown that UiO-66 is... 

    ZIF-8/Chitosan hybrid nanoparticles with tunable morphologies as superior adsorbents towards both anionic and cationic dyes for a broad range of acidic and basic environments

    , Article Microporous and Mesoporous Materials ; Volume 343 , 2022 ; 13871811 (ISSN) Amin, P ; Shojaei, A ; Hamzehlouyan, T ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    A series of nanohybrids using ZIF-8 in the presence of chitosan (CS) at various compositions (0.5–15 wt%) were synthesized. Thorough characterization exhibited that the morphology of the nanoparticles in terms of surface charge, particle size, specific surface area, and pore volume is significantly dominated by the CS content in the hybrid nanoparticles. Amongst the nanoparticles synthesized, a hybrid nanoparticle containing 2 wt% CS, named CS-ZIF-2, represented the largest positive zeta potential and smallest particle size. Moreover, adsorption experiments indicated that CS-ZIF-2 had considerable adsorption capacity against anionic dye (Congo Red, CR) compared with the individual ZIF-8 and... 

    Experimental Investigation of Heavy Oil Recovery by Natural Surfactant Injection in Heterogeneous Systems Using Micromodel Apparatus

    , M.Sc. Thesis Sharif University of Technology Aabloo, Milad (Author) ; Rashtchian, Davood (Supervisor) ; Ghazanfari, Mohammad Hossein (Co-Advisor)
    Abstract
    Nowadays, due to limitation of production from conventional oil reservoirs, enhanced recovery from heavy oil reservoirs is of great concern. However, production from these energy resources is not a simple task and production using common technologies is not easily exploitable. Heterogeneous structure and also high surface tension between injected fluid and reservoir oil are of the main challenges during water flooding processes in heavy oil reservoirs. The high surface tension force causes a large part of the oil remains in the reservoir after the water flooding operation. One method for overcoming this problem is the use of surfactants that reduces capillary forces and consequently... 

    Adsorption and Conversion of Heavy Oil Asphaltene on Composite Nanostructures

    , M.Sc. Thesis Sharif University of Technology Torka Bidokhti, Mostafa (Author) ; Ghotbi, Siros (Supervisor) ; Khodadadi, Abbasali (Supervisor)
    Abstract
    The aim of this project was to upgrade and reduce viscosity of heavy oils by adsorbing of asphaltene on Ni-Mo/CB and converting it into lighter and more valuable gas and liquid compounds. Asphaltene has been extracted from a heavy crude oil sample of Soroush oil field in Iran. After adsorption, Asphaltene conversion to lighter components (gas/liquid) was studied through hydrocracking process. To prepare the support of catalyst, Carbon Black, initially a thermal treatment step under the argon gas atmosphere followed by acid-washing process was performed. Afterward, the catalysts was prepared through dry impregnation method. In order to activate catalyst for hydrocracking, the catalysts has... 

    Kinetic and Equilibrium Modeling of The Gas Adsorption on Adsorbent by Multilayer and Monolayer Adsorption Mechanism

    , M.Sc. Thesis Sharif University of Technology Bidaki, Amin (Author) ; Ghotbi, Cyrus (Supervisor) ; Jafari Behbahani, Taraneh (Supervisor)
    Abstract
    gas adsorption in porous solids and adsorbent,is the important cases in gas processing industries. Including the removal of compounds such as carbon dioxide, hydrogen sulfide and mercaptans from sour gas in natural gas sweetening industry is of great importance.Also in solving the greenhouse phenomena extraction of gases such as methane and carbon dioxide of important environmental issues.To understand and predict the behavior of the absorption capacity of various adsorbents and thus the possibility of absorption systems, a mathematical model is needed.Library resources available in order to determine the kinetics and thermodynamic processes of gas adsorption on solid absorbents use... 

    Synthesis, Evaluation and Modification of Suitable Metal–Organic Frameworks (MOFS) for Desulfurization of Hydrocarbon Cuts

    , M.Sc. Thesis Sharif University of Technology Ghassa, Mahya (Author) ; Khorashe, Farhad (Supervisor) ; Hajjar, Zeinab (Co-Supervisor) ; Soltanali, Saeed (Co-Supervisor)
    Abstract
    During fuel combustion, aromatic sulfur compounds in energy fuels convert into sulfur oxides, which cause major environmental problems such as acidic rain, global warming, and air pollution. Absorption desulfurization is one of the promising and economical methods to remove these sulfur compounds from fuels. Metal-organic frameworks (MOFs) are a class of nanoporous materials that are of interest for use as adsorbents due to their high specific surface area, unique surface adsorption properties, high adsorption capacity, tunable porosity, flexible dynamic behavior, and diversity in functional and metal groups. In this research, we first synthesized five metal-organic frameworks, namely... 

    Dye Removal from Wastewater Using Functionalized Copper Oxide–zinc Oxide Nanocomposite as an Adsorbent

    , M.Sc. Thesis Sharif University of Technology Chamani, Houman (Author) ; Kariminia, Hamid Reza (Supervisor) ; Mahmoudi, Niyaz Mohammad (Supervisor)
    Abstract
    In this thesis, the copper oxide - zinc oxide nanocomposite was synthesized and functionalized using 3-aminopropyltrimethoxysilane. The functionalized nanocomposite was characterized using X-ray Diffraction spectroscopy (XRD), Fourier Transform Infrared (FT-IR), X-ray Fluorescence Spectroscopy (XRF), Scanning Electron Microscopy (SEM) and Brunauer–Emmett–Teller (BET). Dye removal from synthetic wastewater was done in a batch system using functionalized copper oxide - zinc oxide nanocomposite as adsorbent. Direct red 23, direct red 80 and direct red 81 were used for preparation of synthetic wastewaters. The effects of operational parameters such as adsorbent dosage, initial dye concentration,...