Loading...
Search for: hejranfar--kazem
0.009 seconds
Total 50 records

    Development of Compact Finite-Difference Lattice Boltzmann Method for Solving Two-Phase Flows

    , Ph.D. Dissertation Sharif University of Technology Ezzatneshan, Eslam (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present thesis, a high-order compact finite-difference lattice Boltzmann method (CFDLBM) is proposed and applied for an accurate and efficient numerical simulation of liquid-vapor two-phase flows. At first, the stability of the fourth-order CFDLBM is performed by using the von Neumann stability analysis for the D2Q7 and D2Q9 lattices. The stability analysis indicates that the CFDLBM proposed is stable and thus suitable for the simulation of high Reynolds number flows. The high-order CFDLBM is then developed and applied to accurately compute 2-D and 3-D incompressible flows in the Cartesian coordinates. Herein, the spatial derivatives in the lattice Boltzmann equation are discretized... 

    Numerical Simulation of 2D Compressible Cavitation Flow Using Compact Finite-Difference Method

    , M.Sc. Thesis Sharif University of Technology Irani, Mohammad (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, the numerical simulation of 2D inviscid compressible cavitation flow is performed by using the compact finite-difference method. The problem formulation is based on the multiphase compressible Euler equations with the assumption of the homogeneous equilibrium model and the system of baseline differential equations is comprised of the continuity, momentum and energy equations for the vapor-liquid mixture. To complete the system of governing equations, the ideal gas relation is used for the vapor phase and the Tait relation is applied for the liquid phase, and therefore, the compressibility effects are considered for both the vapor and liquid phases. To analyze the flow... 

    Direct Numerical Simulation of External In-compressible Flow Using High-order Accurate Finite-difference Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Aboutalebi, Mohammad (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, a high-order finite-difference lattice Boltzmann solver is applied for simulating steady and unsteady three-dimensional incompressible flows. To achieve an accurate and robust flow solver, the incompressible form of the lattice Boltzmann equation in the three-dimensional generalized curvilinear coordinates is discretized spatially based on the fifth-order weighted essentially non-oscillatory (WENO) finite-difference scheme. To ensure the stability and temporal accuracy of the flow solver, the fourth-order Runge-Kutta method is used for the time integration. To examine the accuracy and performance of the flow solver, different three-dimensional incompressible flow... 

    Numerical Solution of Incompressible Turbulent Flow by Using High-Order Accurate FDLBM and Applying LES

    , M.Sc. Thesis Sharif University of Technology Poorshayegh, Zahra (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, a high-order finite-difference lattice Boltzmann method (FDLBM) is used to simulate the two-dimensional incompressible flows. Here, the incompressible form of the lattice Boltzmann (LB) equation in the two-dimensional generalized curvilinear coordinates is considered and the resulting equation is discretized based on both the third- and fifth-order upwind finite-difference schemes. The time integration of the present flow solver is performed by the fourth-order Runge-Kutta method. Several incompressible laminar flow problems are simulated to examine the accuracy and performance of the developed high-order FDLBM solver. The present results are compared with the existing... 

    Numerical Simulation of One-Dimensional Compressible Flow with Real Gas Effects by Solving Boltzmann Equation Using High-Order Accurate Finitedifference Method

    , M.Sc. Thesis Sharif University of Technology Heydarzadeh, Amir Hossein (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, the Shokov-BGK model of the Boltzmann equation is reformulated and generalized to consider the real gas effects. At first, the formulation is performed to consider an arbitrary specific heats ratio and the correct Prandtl number for polyatomic gases. Here, the resulting equations of the present formulation are numerically solved by applying the high-order finite-difference weighted essentially non-oscillatory (WENO) scheme. The present solution method is tested by computing the one-dimension Reiman problem with different specific heats ratios for a wide range of the Knudsen numbers. The results are compared with the available gas-kinetic results which show good agreement. It... 

    Combustion Instability in a Silo Type Gas Turbine Combustor

    , M.Sc. Thesis Sharif University of Technology Nosrati Shoar, Somayeh (Author) ; Farshchi, Mohammad (Supervisor) ; Hejranfar, Kazem (Supervisor)
    Abstract
    Nowadays, one of the most important desires of the human being is to reduce his living environmental pollution. Using the diluted combustion systems in new gas turbines in order to produce the minimum amount of has been done to satisfy this desire. It should be noted that reducing this amount and using the lower flame temperature will result in some consequences. The most important problem occurred in industrial and aerial gas turbines are the instability of the combustion due to dilution of the fuel to air mixture which it results in heat release fluctuations. If the heat release fluctuations and acoustic pressure are in the same phases, the amplitude of the fluctuations will increase which... 

    Receptivity of High-Speed Flows over Blunt Noses using Spectral Methods

    , Ph.D. Dissertation Sharif University of Technology Najafi, Mehdi (Author) ; Hejranfar, Kazem (Supervisor) ; Esfahanian, Vahid (Co-Advisor)
    Abstract
    The receptivity, transition and stability mechanisms of supersonic and hypersonic boundary layers to freestream disturbances are one of the most complex studies in fluid mechanics. It is well known that turbulent flows generate much higher shear forces on the surface of vehicles and hence much higher viscous heating rates than a laminar flow would at the same flight conditions. Therefore, the accurate prediction of boundary layer behavior is a critical part of the aerodynamic design of high-speed vehicles and thermal protection systems. Formation of a bow shock in front of the vehicle makes the receptivity of flow-field more complex than and different from those of low-speed subsonics. Since... 

    Development of Compact Finite Difference Boltzmann Method for Simulating Compressible Rarefied Gas Flow

    , M.Sc. Thesis Sharif University of Technology Alemi Arani, Ali (Author) ; Hejranfar, Kazem (Supervisor) ; Fouladi, Nematollah (Co-Supervisor)
    Abstract
    In this work, a high-order accurate gas kinetic scheme based on the compact finite-difference Boltzmann method (CFDBM) is developed and applied for simulating the compressible rarefied gas flows. Here, the Shakhov model of the Boltzmann equation is considered and the spatial derivative term in the resulting equation is discretized by using the fourth-order compact finite-difference method and the time integration is performed by using the third-order TVD Runge-Kutta method. A filtering procedure with three discontinuity-detecting sensors is applied and examined for the stabilization of the solution method especially for the problems involving the discontinuity regions such as the shock. The... 

    Experimental Investigation of the Effects of Wing Aspect ratio and its distance from the Tail on the Aerodynamic parameters at high A.O.A

    , M.Sc. Thesis Sharif University of Technology Afshari, Abbas (Author) ; Soltani, Mohammad Reza (Supervisor) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In recent years, requirement to increase projectile performance, leads to a great interest in high angle of attack Aerodynamics. Projectile Maneuverability is a concept which is defined by having the capability to perform at high angles of attack while maintaining attached flow over the tail, rather than a capability of performing a mission in minimum possible duration. Interaction between body, wing and tail vortices can delay vortex breakdown over the wing and as a result may enhance projectile maneuverability. Studies show that wing aspect ratio and tail location have a remarkable influence on the vortices interaction and thus projectile maneuverability. In the present study, a series of... 

    Investigation of the Spray Pattern in the Air Flow Induced by Coaxial Rotors Used for Pesticide Spraying

    , M.Sc. Thesis Sharif University of Technology Soleymani Asl, Hamideh (Author) ; Morad, Mohammad Reza (Supervisor) ; Hejranfar, Kazem (Supervisor)
    Abstract
    The production of agricultural products is one of the most important human economic activities. The issue of mechanized and optimal use of pesticides is vital for human health and the environment, and the use of helicopters makes this possible. Although spray-based systems in helicopters are one of the most effective ways to produce agricultural products, it is still unclear how droplet movement in aerial spraying is affected by the complex downwash flow created by rotors. Modeling agricultural air spray to identify the spray trend of droplets in the air stream, downwash flows, and consequent vortices has attracted more attention as a result of the development of computational fluid...