Loading...
Search for: hejranfar--kazem
0.012 seconds
Total 50 records

    Investigation of the Spray Pattern in the Air Flow Induced by Coaxial Rotors Used for Pesticide Spraying

    , M.Sc. Thesis Sharif University of Technology Soleymani Asl, Hamideh (Author) ; Morad, Mohammad Reza (Supervisor) ; Hejranfar, Kazem (Supervisor)
    Abstract
    The production of agricultural products is one of the most important human economic activities. The issue of mechanized and optimal use of pesticides is vital for human health and the environment, and the use of helicopters makes this possible. Although spray-based systems in helicopters are one of the most effective ways to produce agricultural products, it is still unclear how droplet movement in aerial spraying is affected by the complex downwash flow created by rotors. Modeling agricultural air spray to identify the spray trend of droplets in the air stream, downwash flows, and consequent vortices has attracted more attention as a result of the development of computational fluid... 

    Numerical Simulation of One-Dimensional Compressible Flow with Real Gas Effects by Solving Boltzmann Equation Using High-Order Accurate Finitedifference Method

    , M.Sc. Thesis Sharif University of Technology Heydarzadeh, Amir Hossein (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, the Shokov-BGK model of the Boltzmann equation is reformulated and generalized to consider the real gas effects. At first, the formulation is performed to consider an arbitrary specific heats ratio and the correct Prandtl number for polyatomic gases. Here, the resulting equations of the present formulation are numerically solved by applying the high-order finite-difference weighted essentially non-oscillatory (WENO) scheme. The present solution method is tested by computing the one-dimension Reiman problem with different specific heats ratios for a wide range of the Knudsen numbers. The results are compared with the available gas-kinetic results which show good agreement. It... 

    Numerical Solution of Incompressible Turbulent Flow by Using High-Order Accurate FDLBM and Applying LES

    , M.Sc. Thesis Sharif University of Technology Poorshayegh, Zahra (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, a high-order finite-difference lattice Boltzmann method (FDLBM) is used to simulate the two-dimensional incompressible flows. Here, the incompressible form of the lattice Boltzmann (LB) equation in the two-dimensional generalized curvilinear coordinates is considered and the resulting equation is discretized based on both the third- and fifth-order upwind finite-difference schemes. The time integration of the present flow solver is performed by the fourth-order Runge-Kutta method. Several incompressible laminar flow problems are simulated to examine the accuracy and performance of the developed high-order FDLBM solver. The present results are compared with the existing... 

    Direct Numerical Simulation of External In-compressible Flow Using High-order Accurate Finite-difference Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Aboutalebi, Mohammad (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, a high-order finite-difference lattice Boltzmann solver is applied for simulating steady and unsteady three-dimensional incompressible flows. To achieve an accurate and robust flow solver, the incompressible form of the lattice Boltzmann equation in the three-dimensional generalized curvilinear coordinates is discretized spatially based on the fifth-order weighted essentially non-oscillatory (WENO) finite-difference scheme. To ensure the stability and temporal accuracy of the flow solver, the fourth-order Runge-Kutta method is used for the time integration. To examine the accuracy and performance of the flow solver, different three-dimensional incompressible flow... 

    Numerical Simulation of 2D Compressible Cavitation Flow Using Compact Finite-Difference Method

    , M.Sc. Thesis Sharif University of Technology Irani, Mohammad (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, the numerical simulation of 2D inviscid compressible cavitation flow is performed by using the compact finite-difference method. The problem formulation is based on the multiphase compressible Euler equations with the assumption of the homogeneous equilibrium model and the system of baseline differential equations is comprised of the continuity, momentum and energy equations for the vapor-liquid mixture. To complete the system of governing equations, the ideal gas relation is used for the vapor phase and the Tait relation is applied for the liquid phase, and therefore, the compressibility effects are considered for both the vapor and liquid phases. To analyze the flow... 

    Development of Compact Finite Difference Boltzmann Method for Simulating Compressible Rarefied Gas Flow

    , M.Sc. Thesis Sharif University of Technology Alemi Arani, Ali (Author) ; Hejranfar, Kazem (Supervisor) ; Fouladi, Nematollah (Co-Supervisor)
    Abstract
    In this work, a high-order accurate gas kinetic scheme based on the compact finite-difference Boltzmann method (CFDBM) is developed and applied for simulating the compressible rarefied gas flows. Here, the Shakhov model of the Boltzmann equation is considered and the spatial derivative term in the resulting equation is discretized by using the fourth-order compact finite-difference method and the time integration is performed by using the third-order TVD Runge-Kutta method. A filtering procedure with three discontinuity-detecting sensors is applied and examined for the stabilization of the solution method especially for the problems involving the discontinuity regions such as the shock. The... 

    Numerical Simulation of Natural Convection Using Smoothed Particle Hydrodynamics with Artificial Compressibility Method

    , M.Sc. Thesis Sharif University of Technology Attari, Reza (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this research, the numerical simulation of the natural convection is performed by using the smoothed particle hydrodynamics based on the artificial compressibility method. For this aim, the formulation of the artificial compressibility method in the Eulerian reference frame for the mass and momentum equations is written in the Lagragian reference frame and the Lagrangin form of the energy equation is also considered to compute the thermal effects. The benefit of the artificial compressibility-based incompressible SPH (ACISPH) method over the weakly compressible SPH (WCSPH) method for computing the natural convection is that there is no need in the formulation considered here to use any... 

    Development of Spectral Difference Lattice Boltzmann Method for Solution of Compressible Flows

    , Ph.D. Dissertation Sharif University of Technology Ghaffarian, Ali (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this research, the spectral difference lattice Boltzmann method (SDLBM) is developed and applied for an accurate simulation of two-dimensional (2D) inviscid and viscous compressible flows on the structured and unstructured meshes. The compressible form of the discrete Boltzmann-BGK equation is used in which multiple particle speeds have to be employed to correctly model the compressibility in a thermal fluid. Here, the 2D compressible Lattice Boltzmann (LB) model proposed by Watari is used. The spectral difference (SD) method is implemented for the solution of the LB equation in which the particle distribution functions are stored at the solution points while the fluxes are calculated... 

    Development of discontinuous Galerkin method on Unstructured Grids for simulation of cavitating Flows

    , Ph.D. Dissertation Sharif University of Technology Haji Hassanpour, Mahya (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this work, a high-order nodal discontinuous Galerkin method (NDGM) is applied and assessed for the simulation of the non-cavitating/cavitating flows. At first, the basic formulation of the NDGM is explained and the properties of the solution method of the NDGM are studied by solving the one-dimensional wave equation. Then, the one-fluid approach with the thermal effects is used to properly model the cavitation phenomenon. Here, the spatial and temporal derivatives in the system of governing equations are discretized using the NDGM and the third-order TVD Runge–Kutta method, respectively. Various numerical fluxes such as the Roe, Rusanov, HLL, HLLC and AUSM+-up and two discontinuity... 

    Numerical Simulation of Incompressible Turbulent Flow with the Artificial Compressibility-Based Incompressible Smoothed Particle Hydrodynamics

    , M.Sc. Thesis Sharif University of Technology Talebi, Mahyar (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, an incompressible smoothed particle hydrodynamics based on the artificial compressibility method is applied for simulating the incompressible turbulent flows. The Reynolds-averaged incompressible Navier–Stokes equations using the artificial compressibility method in the Eulerian reference frame are written in the Lagrangian reference frame to provide an appropriate incompressible SPH algorithm for the turbulent flow computations. Here, the k-L_m turbulence model, which is a simplified k-ϵ turbulence model, is used and formulated in the Lagrangian reference frame. The SPH formulation implemented here is based on an implicit dual-time stepping scheme to be capable of... 

    Development of Characteristic Boundary Conditions with Artificial Compressibility Method by Compact Finite-Difference Discretization

    , Ph.D. Dissertation Sharif University of Technology Parseh, Kaveh (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, the preconditioned incompressible Navier‐Stokes equations with the artificial compressibility (AC) method formulated in the generalized curvilinear coordinates are numerically solved by using a high‐order compact finite‐difference scheme for accurately and efficiently computing the incompressible flows. A fourth‐order compact finite‐difference scheme is utilized to discretize the spatial derivative terms of the resulting system of equations and the time integration is carried out based on the dual time‐stepping method. The capability of the proposed solution methodology for computing the steady and unsteady incompressible viscous flows in a wide range of Reynolds... 

    Numerical Simulation of Shock-Disturbances Interaction in 2-D Compressible Flows Considering Real Gas Effects by Using WENO Method

    , M.Sc. Thesis Sharif University of Technology Rahmani, Saman (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, the shock-disturbances interaction in hypersonic inviscid flows considering real gas effects is numerically studied by using a high-order WENO scheme. To account for real gas effects, the equilibrium air model is utilized. The strong conservative form of the two-dimensional unsteady Euler equations in the generalized curvilinear coordinates is considered as the governing equations and a shock-capturing technique is applied. The resulting system of equations is discretized by using the fifth-order WENO finite-difference scheme in space and the explicit third-order TVD Runge-Kutta scheme in time to provide a high-order accurate flow solver. The WENO scheme is a stable scheme... 

    Analyzing Fluid–Structure Interaction Problems in Compressible Flows

    , Ph.D. Dissertation Sharif University of Technology Azampour, Mohammad Hadi (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    The goal of this thesis is the development and application of the finite volume method (FVM) with a same solution procedure in the fluid and structure domains for the simulation of fluid-structure interaction (FSI) problems in the compressible fluid flow. The unsteady Euler equations written in the arbitrary Lagrangian–Eulerian (ALE) form are considered as the governing equations of the compressible fluid flow and the moderate/large nonlinear deformation of the elastic structure is considered to be governed by the Cauchy equations in the Lagrangian/total Lagrangian forms. Therefore, the nonlinear phenomena in the unsteady compressible fluid flow and the large deformation of the elastic... 

    Numerical Simulation of 2D Panel Flutter in Compressible Flow using Compact Finite-Difference Method

    , M.Sc. Thesis Sharif University of Technology Vafaei Sefti, Maryam (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, the numerical simulation of the panel flutter in compressible inviscid flow is performed by the compact finite difference method. For this purpose, the 2D compressible Euler equations written in the arbitrary Lagrange-Eulerian form are considered and the resulting system of equations in the generalized curvilinear coordinates is solved by the fourth-order compact finite-difference method. An appropriate nonlinear filter is applied for the shock capturing and for the solution to be stable. The governing equation for the panel is also numerically solved by using the fourth-order compact finite difference method. The time integration in the flow domain is made by the... 

    Numerical Simulation of Viscous Compressible Flow Around an Oscilating Airfoil Using Immersed Boundary Method

    , M.Sc. Thesis Sharif University of Technology Gholami Haghighi Fard, Morteza (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, the computation of the viscous compressible flow over two-dimensional geometries is performed by using the immersed boundary method and applying a second-order finite volume scheme. For the solution of the governing equations, a uniform Cartesian grid that is not coincident with the body surface is used and the boundary conditions on the wall are satisfied by the ghost-cell immersed boundary method. The spatial discretization of the fluid equations is carried out using the second-order central difference finite volume scheme and the time integration is performed by applying the fourth-order Runge-Kutta method. To stabilize the solution algorithm and reduce unwanted... 

    Simulation of Compressible Rarefied Gas Flow using High-Order WENO Finite-difference Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Zamani Ashtiani, Shaghayegh (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    The goal of the present study is to simulate the compressible rarefied gas flow by using a high-order finite-difference lattice Boltzmann method. Here, a weighted essentially non-oscillatory lattice Boltzmann method (WENO-LBM) is applied for the solution of the compressible form of the LB equation with the Kataoka-Tsutahara model. The solution procedure is based on the discretization of the convection terms of the LB equation using the fifth-order finite-difference WENO scheme and the temporal term using the third-order explicit total variation diminishing Runge-Kutta scheme for both the continuum and rarefied gas flows. The treatment of implementing the no-slip and slip boundary conditions... 

    Development of an Incompressible Smoothed Particle Hydrodynamics Method based on Vorticity-stream Function Formulation

    , M.Sc. Thesis Sharif University of Technology Alibakhshian, Mohammad Reza (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, an incompressible smoothed particle hydrodynamics method based on vorticity-stream function (VSF-SPH) formulation is developed and assessed for simulating steady and unsteady incompressible flows. The vorticity-stream function formulation in the Eulerian reference frame is written in a Lagrangian reference frame to provide an appropriate incompressible SPH algorithm. The advantage of the proposed smoothed particle hydrodynamics method based on the vorticity-stream function (VSF-SPH) formulation over the weakly compressible SPH (WCSPH) is that the VSF-SPH method is a truly incompressible SPH algorithm and it does not involve any approximate enforcement of the... 

    Implementing Appropriate Numerical Filters in the Lattice Boltzmann Method for Solving Multiphase Incompressible Flows with Large Density Ratio

    , M.Sc. Thesis Sharif University of Technology Bidi, Saeed (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, two finite-difference lattice Boltzmann methods (FDLBM) are applied and assessed for the simulation of two-phase liquid-vapor flows with high density ratios. For this aim, the He-Shan-Doolen type lattice Boltzmann multiphase model is used and the spatial derivatives in the resulting system of equations are discretized by using the second-order central difference and modified Lax-Wendroff schemes. Suitable numerical dissipation terms and filters are applied to regularize the numerical solution and remove spurious waves generated by flow nonlinearities in smooth regions and at the same time to remove the numerical oscillations in the interface region of the two phases.Three... 

    Numerical Simulation of Compressible Magnetohydrodynamic Flow Using Spectral Difference Method on Quadrilateral Grids

    , M.Sc. Thesis Sharif University of Technology Kafian, Hesam (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present work, the numerical solution of 2D inviscid compressible Magneto-hydrodynamic flow is performed by using the spectral difference (SD) method on quadrilateral grids. In this numerical method, similar to the discontinuous Galerkin (DG) and spectral volume (SV) methods, the concept of the discontinuous and high-order local representations is used to achieve conservation property and high-order accuracy. In the SD method, the test function or the surface integral is not involved and thus it has a simpler formulation than the DG and SV methods. In this numerical method, two sets of structured points, namely unknown points and flux points, are defined in each cell to support the... 

    Numerical Solution of Two-dimensional Compressible Flow Using Immersed Boundary Method with Compact Finite Difference Scheme

    , M.Sc. Thesis Sharif University of Technology Mashayekh, Erfan (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, the viscous compressible flow is simulated over two-dimensional geometries by using the immersed boundary method and applying a high-order accurate numerical scheme. A fourth-order compact finite-difference scheme is used to accurately discretize the spatial derivative terms of the governing equations and the time integration is performed by the fourth-order Runge–Kutta scheme. To regularize the numerical solution and eliminate spurious modes due to unresolved scales, nonlinearities and inaccuracies in implementing boundary conditions, high-order low-pass compact filters are applied. A uniform Cartesian grid that is not coincident with the body surface is used and the boundary...