Loading...
Search for: hejranfar--kazem
0.007 seconds
Total 50 records

    Numerical Simulation of Compressible Viscous Flows Using Central Difference Finite Volume Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Katal, Ali (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, 2-D compressible viscous and inviscid flows are simulated by using a finite volume Lattice Boltzmann method. Two different models, namely, the Qu model and Watari model are employed for compressible flows simulations. The first model includes 13 discrete velocity vectors and 2 energy levels in which the Maxwellian function is replaced with a simple function for describing the distribution function that is suitable for inviscid flow simulations. The second model is a thermal multi-velocity model with isotropic tensors up to seventh rank that is suitable for compressible viscous and inviscid flow simulations with arbitrary specific heats ratio. In both the models, lattice... 

    Development of WENO Finite Difference Lattice Boltzmann Method for Simulation of 2D Incompressible Laminar and Turbulent Flows

    , M.Sc. Thesis Sharif University of Technology Saadat, Mohammad Hossein (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, the numerical simulation of incompressible laminar and turbulent flows using a high-order finite difference lattice Boltzmann method is presented. To handle curved geometries with non uniform grids, the incompressible form of lattice Boltzmann equation is transformed into the generalized curvilinear coordinates and the spatial derivatives of the resulting equation are discretized using the fifth-order WENO scheme. The advantage of using the WENO-LBM developed is that it needs less number of grid points and remains stable even at high Reynolds number flows. For the temporal term, the fourth-order explicit Rung-Kutta scheme is adopted for laminar flow calculations and... 

    Numerical Solution of Two-dimensional Compressible Flow Using Immersed Boundary Method with Compact Finite Difference Scheme

    , M.Sc. Thesis Sharif University of Technology Mashayekh, Erfan (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, the viscous compressible flow is simulated over two-dimensional geometries by using the immersed boundary method and applying a high-order accurate numerical scheme. A fourth-order compact finite-difference scheme is used to accurately discretize the spatial derivative terms of the governing equations and the time integration is performed by the fourth-order Runge–Kutta scheme. To regularize the numerical solution and eliminate spurious modes due to unresolved scales, nonlinearities and inaccuracies in implementing boundary conditions, high-order low-pass compact filters are applied. A uniform Cartesian grid that is not coincident with the body surface is used and the boundary... 

    Numerical Simulation of Viscous Compressible Flow Around an Oscilating Airfoil Using Immersed Boundary Method

    , M.Sc. Thesis Sharif University of Technology Gholami Haghighi Fard, Morteza (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, the computation of the viscous compressible flow over two-dimensional geometries is performed by using the immersed boundary method and applying a second-order finite volume scheme. For the solution of the governing equations, a uniform Cartesian grid that is not coincident with the body surface is used and the boundary conditions on the wall are satisfied by the ghost-cell immersed boundary method. The spatial discretization of the fluid equations is carried out using the second-order central difference finite volume scheme and the time integration is performed by applying the fourth-order Runge-Kutta method. To stabilize the solution algorithm and reduce unwanted... 

    Numerical Simulation of 2D Panel Flutter in Compressible Flow using Compact Finite-Difference Method

    , M.Sc. Thesis Sharif University of Technology Vafaei Sefti, Maryam (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, the numerical simulation of the panel flutter in compressible inviscid flow is performed by the compact finite difference method. For this purpose, the 2D compressible Euler equations written in the arbitrary Lagrange-Eulerian form are considered and the resulting system of equations in the generalized curvilinear coordinates is solved by the fourth-order compact finite-difference method. An appropriate nonlinear filter is applied for the shock capturing and for the solution to be stable. The governing equation for the panel is also numerically solved by using the fourth-order compact finite difference method. The time integration in the flow domain is made by the... 

    Analyzing Fluid–Structure Interaction Problems in Compressible Flows

    , Ph.D. Dissertation Sharif University of Technology Azampour, Mohammad Hadi (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    The goal of this thesis is the development and application of the finite volume method (FVM) with a same solution procedure in the fluid and structure domains for the simulation of fluid-structure interaction (FSI) problems in the compressible fluid flow. The unsteady Euler equations written in the arbitrary Lagrangian–Eulerian (ALE) form are considered as the governing equations of the compressible fluid flow and the moderate/large nonlinear deformation of the elastic structure is considered to be governed by the Cauchy equations in the Lagrangian/total Lagrangian forms. Therefore, the nonlinear phenomena in the unsteady compressible fluid flow and the large deformation of the elastic... 

    Numerical Simulation of 2D Inviscid Compressible Magnetohydrodynamic Flows by Spectal Difference Method

    , M.Sc. Thesis Sharif University of Technology Kharratyan, Mahdi (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, the numerical solution of 2D inviscid compressible ideal magnetohydrodynamic (MHD) flows by using the spectral difference (SD) method on unstructured meshes is performed. The SD method combines the most desirable features of structured and unstructured grid methods to have computational efficiency and geometric flexibility to accurately compute flow over complex geometries. In the SD method, two sets of structured points, namely “unknown points” and “flux points”, are defined in each cell to support the reconstruction of given order of accuracy. The differential form of the conservation laws is satisfied at nodal unknown points while the flux derivatives expressed in... 

    A ¬High Order Accurate Numerical Solution of Incompressible Slip Flow in Microchannels with Heat Transfer by Using Artificial Compressibility Method

    , M.Sc. Thesis Sharif University of Technology Mohafez, Mir Hamed (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, a high-order accurate numerical solution of steady incompressible slip flow and heat transfer in 2D microchannels is presented. The numerical method used is an alternating direction implicit operator scheme which is efficiently implemented to solve the incompressible Navier-Stokes equations in the primitive variables formulation using the artificial compressibility method. To stabilize the numerical solution, numerical filters are used. The present methodology considers the solution of the Navier-Stokes equations with¬ employing different slip boundary condition¬¬ (Maxwell,¬ ¬¬Hyperbolic tangent function of Knudsen number¬ and Beskok slip models)¬ ¬¬on the wall to model... 

    Simulation of two-Dimensional Supersonic Flow in Slip Regime in Microchannel with Finite Difference Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Barootiha, Hamed (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, the simulation of two-dimensional supersonic flows through microchannels in slip flow regime is performed using a lattice Boltzmann model (LBM). Traditional LB models have been used to simulate incompressible fluid flows and there are not suitable for modeling compressible or thermo-fluid flows. Herein, a recently developed LB model, namely, the finite difference lattice Boltzmann method (FDLBM), is employed to simulate compressible flows with embedded shocks. In this model, one can select particle velocities independently from the lattice configuration, and therefore, a correct and numerically stable multispeed thermal model by adopting more isotropic particle velocities can... 

    Simulation of Compressible Rarefied Gas Flow using High-Order WENO Finite-difference Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Zamani Ashtiani, Shaghayegh (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    The goal of the present study is to simulate the compressible rarefied gas flow by using a high-order finite-difference lattice Boltzmann method. Here, a weighted essentially non-oscillatory lattice Boltzmann method (WENO-LBM) is applied for the solution of the compressible form of the LB equation with the Kataoka-Tsutahara model. The solution procedure is based on the discretization of the convection terms of the LB equation using the fifth-order finite-difference WENO scheme and the temporal term using the third-order explicit total variation diminishing Runge-Kutta scheme for both the continuum and rarefied gas flows. The treatment of implementing the no-slip and slip boundary conditions... 

    Numerical Solution of Hypersonic Axisymmetric Flows Including Real Gas Effects Using Compact Finite-Difference Scheme

    , M.Sc. Thesis Sharif University of Technology Khodadadi, Polin (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract

    The numerical solution of the parabolized Navier-Stokes (PNS) equations for accurate computation of hypersonic axisymmetric flowfield with real gas effects is obtained by using the fourth-order compact finite-difference method. The PNS equations in the general curvilinear coordinates are solved by using the implicit finite-difference algorithm of Beam and Warming type with a high-order compact accuracy. A shock fitting procedure is utilized in the compact PNS scheme to obtain accurate solutions in the vicinity of the shock. To stabilize the numerical solution, numerical dissipation term and filters are used. The main advantage of the present formulation is that the basic flow variables... 

    Development of Characteristic Boundary Conditions with Artificial Compressibility Method by Compact Finite-Difference Discretization

    , Ph.D. Dissertation Sharif University of Technology Parseh, Kaveh (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, the preconditioned incompressible Navier‐Stokes equations with the artificial compressibility (AC) method formulated in the generalized curvilinear coordinates are numerically solved by using a high‐order compact finite‐difference scheme for accurately and efficiently computing the incompressible flows. A fourth‐order compact finite‐difference scheme is utilized to discretize the spatial derivative terms of the resulting system of equations and the time integration is carried out based on the dual time‐stepping method. The capability of the proposed solution methodology for computing the steady and unsteady incompressible viscous flows in a wide range of Reynolds... 

    Numerical Simulation of Cavitating Flows with Ventilation Using Multiphase Navier-Stokes Equations

    , M.Sc. Thesis Sharif University of Technology Azizollahi Najafabadi, Alireza (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, the numerical simulation of natural and ventilated cavitating flows is performed. The algorithm employs the homogenous, multiphase Navier-Stokes equations with appropriate mass transfer terms.The base line differential equations system is comprised of the mixture volume, mixture momentum and constituent volume fraction equations. A three species differential formulation is considered for constituent volume fraction transport/generation of liquid, condensable vapor and non-condensable gas fields.The system of governing equations is discretized using a cell-centered finite volume Roe’s upwind scheme. Both laminar and turbulent cavitating flows are considered in this study. For... 

    Preconditioning Methods to Accelerate and Improve Solution of Compressible Flow around Rotor

    , Ph.D. Dissertation Sharif University of Technology Kamali Moghadam, Ramin (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, the numerical simulation of the compressible inviscid flow around helicopter rotor is performed using the solution of the preconditioned Euler equations. Three preconditioners proposed by Eriksson, Choi and Merkel, and Turkel are implemented in two- and three-dimensional upwind Euler flow solvers on unstructured meshes. The mathematical formulations of these preconditioning schemes for different sets of primitive variables are drawn and their eigenvalues and eigenvectors are compared with each others. For this aim, these preconditioning schemes are expressed in a unified formulation. A cell-centered finite volume Roe's upwind method is used for the discretization of the... 

    Numerical Simulation of Shock-Disturbances Interaction in 2-D Compressible Flows Considering Real Gas Effects by Using WENO Method

    , M.Sc. Thesis Sharif University of Technology Rahmani, Saman (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present study, the shock-disturbances interaction in hypersonic inviscid flows considering real gas effects is numerically studied by using a high-order WENO scheme. To account for real gas effects, the equilibrium air model is utilized. The strong conservative form of the two-dimensional unsteady Euler equations in the generalized curvilinear coordinates is considered as the governing equations and a shock-capturing technique is applied. The resulting system of equations is discretized by using the fifth-order WENO finite-difference scheme in space and the explicit third-order TVD Runge-Kutta scheme in time to provide a high-order accurate flow solver. The WENO scheme is a stable scheme... 

    Numerical Solution of 2D Incompressible Flow Using Spectral Difference Method

    , M.Sc. Thesis Sharif University of Technology Baradaran Kazemian, Behzad (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this study, an accurate numerical solution of the two-dimensional incompressible viscous flows is performed by using the spectral difference method on structured grids. The system of equations to be solved here is the preconditioned incompressible Navier-Stokes equations in the primitive variable formulation with the artificial compressibility approach. In the spectral difference method, two sets of the structured points, namely, “solution points” and “flux points” are defined in each cell for supporting the reconstruction of desirable order of accuracy. Here, the formulation of the spectral difference method is derived and the representative form of the solution and flux points for... 

    Development of discontinuous Galerkin method on Unstructured Grids for simulation of cavitating Flows

    , Ph.D. Dissertation Sharif University of Technology Haji Hassanpour, Mahya (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this work, a high-order nodal discontinuous Galerkin method (NDGM) is applied and assessed for the simulation of the non-cavitating/cavitating flows. At first, the basic formulation of the NDGM is explained and the properties of the solution method of the NDGM are studied by solving the one-dimensional wave equation. Then, the one-fluid approach with the thermal effects is used to properly model the cavitation phenomenon. Here, the spatial and temporal derivatives in the system of governing equations are discretized using the NDGM and the third-order TVD Runge–Kutta method, respectively. Various numerical fluxes such as the Roe, Rusanov, HLL, HLLC and AUSM+-up and two discontinuity... 

    Development of Spectral Difference Lattice Boltzmann Method for Solution of Compressible Flows

    , Ph.D. Dissertation Sharif University of Technology Ghaffarian, Ali (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this research, the spectral difference lattice Boltzmann method (SDLBM) is developed and applied for an accurate simulation of two-dimensional (2D) inviscid and viscous compressible flows on the structured and unstructured meshes. The compressible form of the discrete Boltzmann-BGK equation is used in which multiple particle speeds have to be employed to correctly model the compressibility in a thermal fluid. Here, the 2D compressible Lattice Boltzmann (LB) model proposed by Watari is used. The spectral difference (SD) method is implemented for the solution of the LB equation in which the particle distribution functions are stored at the solution points while the fluxes are calculated... 

    Numerical Simulation of Natural Convection Using Smoothed Particle Hydrodynamics with Artificial Compressibility Method

    , M.Sc. Thesis Sharif University of Technology Attari, Reza (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In this research, the numerical simulation of the natural convection is performed by using the smoothed particle hydrodynamics based on the artificial compressibility method. For this aim, the formulation of the artificial compressibility method in the Eulerian reference frame for the mass and momentum equations is written in the Lagragian reference frame and the Lagrangin form of the energy equation is also considered to compute the thermal effects. The benefit of the artificial compressibility-based incompressible SPH (ACISPH) method over the weakly compressible SPH (WCSPH) method for computing the natural convection is that there is no need in the formulation considered here to use any... 

    Numerical Simulation Cavitating Flows Using Compact Finite-difference Scheme

    , M.Sc. Thesis Sharif University of Technology Shokri, Maryam (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the study, the simulation of two-dimensional cavitating flows is performed by applying a high-order accurate numerical method to the preconditioned, homogenous, multiphase Navier-Stokes equations. The baseline differential equations system is comprised of the mixture volume, mixture momentum and constituent volume fraction equations. A coordinate transformation is applied and the resulting system of governing equations in curvilinear coordinates is discretized using a fourth-order compact finite-difference scheme. The high-order accurate numerical scheme employing the suitable linear and nonlinear filters to account for density jumps across the cavity interface is shown to yield an...