Loading...
Search for: strain-aging
0.012 seconds
Total 38 records

    Investigation on Thermo-mechanical Behavior of AA5086 During Warm and Hot Rolling Operation

    , M.Sc. Thesis Sharif University of Technology Asgharzadeh, Amir (Author) ; Serajzadeh, Siamak (Supervisor)
    Abstract
    A mathematical model has been proposed to estimate the deformation pattern and the required power in cold plate rolling using the stream function method and upper bound theorem. In the first place admissible velocity distributions as well as the geometry of deformation zone were derived from the proposed stream functions. Then, the optimum velocity field was obtained by minimization of the power function computed based on the upper bound theorem. Then a steady state heat transfer equation has been solved in whole model using finite element method. In order to verify the predictions, rolling experiments on aluminum plates were conducted and also, a finite element analysis performed employing... 

    Development of Nanostructural Al-Mg-Si Alloys using ECAE and Ageing Processes

    , Ph.D. Dissertation Sharif University of Technology Vaseghi, Majid (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    The manufacture of ultra high strength materials has always been a target for aerospace and transportation industries. Currently, the limitation of energy resources even makes this goal more serious. Nowadays, more than 50% of total extrusion products are made from Al alloys and around 90% of them are the 6000 series alloys. Therefore, regarding to high strength, low weight, and hardening aluminum AA6000 alloys capabilities can play a major role in fulfilling this task. Over the last decade, a number of techniques collectively referred to as severe plastic deformation (SPD), have emerged as a promising approach for the production of bulk ultrafine-grained (UFG) nano-structured materials.... 

    Investigation of Multistage Static Strain Aging of Low Carbon Steel using Rolling Pre-strain

    , M.Sc. Thesis Sharif University of Technology Rizehvandy, Siroos (Author) ; karimi taheri, Ali (Supervisor)
    Abstract
    In the present study, multistage strain aging phenomenon using rolling pre-strain and solution treatment at 680℃ for 40 min was used to study the effect of temperature and inter-pass time (IPT) on the static strain aging behavior of a low carbon steel sheet. The increase in hardness and strength caused by work hardening and the aging at each pass were separately calculated.The samples were rolled and subjected to aging process both in a single pass of 20% rolling reduction in thickness and in four stages consisted of 5% reduction at each stage. The mechanical properties of the samples aged at different time and temperature, were compared. In order to evaluate the effects of pre-strain type,... 

    An Investigation into the Al-6wt%Mg work Hardening Behavior after Cold Rolling

    , M.Sc. Thesis Sharif University of Technology Abdollahzadeh, Amin (Author) ; Kazeminezhad, Mohsen (Supervisor)
    Abstract
    Al-6wt%Mg alloy has been enormously exploited in aerospace industry. Since for production of this alloy in the form of sheets of different thickness, the cold rolling process is used, thus to understand the final mechanical properties of the rolled alloy products, their work hardening should be examined. Also, one of the important phenomena that occurs in cold state of the alloy is dynamic strain-aging (DSA), which can cause serrations in realistic stress-strain curve. The aforementioned issue is discussed in the current study. Therefore, the work-hardening values for the mentioned alloy during and after rolling is determined, and then compared with the experimental studies. The results of... 

    An Investigation on Multistage Strain Aging Using Rolling Process on Mechanical and Formability of Stainless Steel 304L

    , M.Sc. Thesis Sharif University of Technology Mousavinia, Ali (Author) ; Karimi Taheri, Ali (Supervisor) ; Akbarzadeh Changiz, Abbas (Supervisor)
    Abstract
    Austenitic stainless steels have extensive and special mechanical properties because of austenite to α΄-martensite transformation due to plastic work. Obtaining a process path that provides maximum strength and flexibility and minimum α΄-martensite content (α΄-martensite increases corrosion current) in these steels is important in the industry. Applying the aging process after applying plastic strain (single-stage aging) results in an increase in strength of up to 200 MPa and an increase in hardness of up to 60 Vickers. However, single-stage aging does not cause significant changes in the amount of α΄-martensite in steel and in the temperature range of 400 to 500 ° C, it causes a slight... 

    The effect of pre-straining at intermediate temperatures on the mechanical behavior of high-bainite dual phase (HBDP) steels

    , Article Materials Science and Engineering A ; Volume 543 , May , 2012 , Pages 224-230 ; 09215093 (ISSN) Farnoush, H ; Haghshenas Fatmehsari, D ; Ekrami, A ; Sharif University of Technology
    Abstract
    High-bainite dual phase (HBDP) steels with 34. vol.% ferrite were subjected to tensile strains of 1%, 3%, and 5% at intermediate temperatures (150-450. °C). Mechanical behavior of pre-deformed steels was then investigated at room temperature. A maximum value for both yield stress and ultimate tensile strength was observed for pre-deformed steels. A minimum elongation was also found in the same pre-deformed specimens at the range of 250-350. °C. It was found that dynamic strain aging (DSA) plays the major role in mechanical properties of pre-strained HBDP steels. The DSA indicator parameter (DSAP) was introduced to evaluate DSA mechanism. Maxima of DSAP were likewise observed at the range of... 

    The effect of dynamic strain aging on subsequent mechanical properties of dual-phase steels

    , Article Journal of Materials Engineering and Performance ; Volume 19, Issue 4 , June , 2010 , Pages 607-610 ; 10599495 (ISSN) Molaei, M. J ; Ekrami, A ; Sharif University of Technology
    2010
    Abstract
    Dual-phase (DP) steels with different martensite contents were produced by subjecting a low carbon steel to various heat treatment cycles. In order to investigate the effect of dynamic strain aging (DSA) on mechanical properties, tensile specimens were deformed 3% at 300 °C. Room temperature tensile tests of specimens which deformed at 300 °C showed that both yield and ultimate tensile strengths increased, while total elongation decreased. The fatigue limit increased after pre-strain in the DSA temperature range. The effects of martensite volume fraction on mechanical properties were discussed  

    The effect of dynamic strain aging on room temperature mechanical properties of high martensite dual phase (HMDP) steel

    , Article Materials Science and Engineering A ; Volume 550 , 2012 , Pages 325-332 ; 09215093 (ISSN) Shahriary, M. S ; Koohbor, B ; Ahadi, K ; Ekrami, A ; Khakian Qomi, M ; Izadyar, T ; Sharif University of Technology
    Elsevier  2012
    Abstract
    AISI 4340 steel bars were heated at 900 °C for one hour, annealed at 738 °C for different durations and oil-quenched in order to obtain dual phase steels with different ferrite volume fractions. A 3% prestrain at the temperature range of 150-450 °C was then imposed to the samples, and room temperature tensile tests were carried out, afterwards. Results indicate that the maximum values for both yield and ultimate tensile strength would exist for the samples pre-strained at the temperature range of 250-300 °C. Also, a sudden drop of the ductility was observed at the mentioned temperature range. The observed behavior might be attributed to the occurrence of dynamic strain aging taken place at... 

    The effect of dynamic strain aging on fatigue properties of dual phase steels with different martensite morphology

    , Article Materials Science and Engineering A ; Volume 527, Issue 1-2 , 2009 , Pages 235-238 ; 09215093 (ISSN) Molaei, M. J ; Ekrami, A ; Sharif University of Technology
    Abstract
    Dual phase (DP) steels with network and fibrous martensite were produced by intercritical annealing heat treatment cycles. Some of these steels were deformed at dynamic strain aging temperatures. Room temperature tensile tests of specimens deformed at 300 °C showed that both yield and ultimate tensile strengths for both morphologies increased, while total elongation decreased. Fatigue test results before and after high temperature deformation showed that dynamic strain aging has a stronger effect on fatigue properties of dual phase steels with fibrous martensite. Cracks in DP steels with fibrous martensite propagate in a tortuous path in soft ferrite phase, while they pass of both hard and... 

    Study on static strain aging of 6082 aluminium alloy

    , Article Materials Science and Technology ; Volume 26, Issue 2 , Jul , 2010 , Pages 169-175 ; 02670836 (ISSN) Dadbakhsh, S ; Karimi Taheri, A ; Sharif University of Technology
    2010
    Abstract
    In this study both the quench aging and static strain aging kinetics of a 6082 Al alloy were investigated at a temperature range of 130-200°C using the Vickers hardness and tensile test. The activation energy and dislocation density were determined at different stages of the aging phenomenon. The former was used to analyse the kinetics of aging and the latter to interpret the competition of strengthening and recovery mechanisms during aging. It is shown that different activation energies are achieved depending on the aging time and temperature relating to formation of appropriate precipitates at different stages of aging. Moreover, it is revealed that prestrain reduces the activation energy.... 

    Study on effect of residual stress distributions on kinetics of static strain aging after cold rolling

    , Article Materials Science and Technology ; Volume 27, Issue 11 , 2011 , Pages 1620-1626 ; 02670836 (ISSN) Koohbor, B ; Serajzadeh, S ; Sharif University of Technology
    Abstract
    In the present research, the effect of residual stress distribution on the static strain aging (SSA) phenomenon in cold rolled steel was investigated. A three-dimensional model was employed to evaluate the residual stress distributions within the rolled strips, and hole drilling experiments were also performed to verify the data obtained from the mathematical model. Hardness and tensile tests were then performed on the cold rolled samples at different temperatures and aging periods, and the results of these tests were utilised to assess SSA behaviour after different rolling programs. The results show that SSA occurs within the cold rolled steel in the employed aging period, and its kinetics... 

    Static strain aging behavior of a manganese-silicon steel after single and multi-stage straining

    , Article Journal of Materials Engineering and Performance ; Volume 25, Issue 3 , 2016 , Pages 1047-1055 ; 10599495 (ISSN) Seraj, P ; Serajzadeh, S ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    In this work, static strain aging behavior of an alloy steel containing high amounts of silicon and manganese was examined while the influences of initial microstructure and pre-strain on the aging kinetics were evaluated as well. The rate of strain aging in a low carbon steel was also determined and compared with that occurred in the alloy steel. The rates of static strain aging in the steels were defined at room temperature and at 95 °C by means of double-hit tensile testing and hardness measurements. In addition, three-stage aging experiments at 80 °C were carried out to estimate aging behavior under multi-pass deformation processing. The results showed that in-solution manganese and... 

    Simulation and experimental analyses of dynamic strain aging of a supersaturated age hardenable aluminum alloy

    , Article Materials Science and Engineering A ; Volume 585 , 2013 , Pages 165-173 ; 09215093 (ISSN) Anjabin, N ; Karimi Taheri, A ; Kim, H. S ; Sharif University of Technology
    2013
    Abstract
    In this paper, dynamic strain aging (DSA) behavior in a temperature range of (25-235°C) and strain rate range of (10-4-5×10-2s-1) was investigated using a supersaturated age hardenable aluminum alloy. It was found that two mechanisms consisted of pinning of solute atoms to mobile dislocations and dynamic precipitation, were responsible for DSA in the testing conditions. The effects of both mechanisms on the macroscopic flow curve were studied using experimental and improved physically based material modeling approaches. It was shown that both phenomena lead to a negative strain rate hardening in the alloy. Dynamic precipitation acting at high temperature results in considerable work... 

    Severe plastic deformation of 6061 aluminum alloy tube with pre and post heat treatments

    , Article Materials Science and Engineering A ; Volume 563 , 2013 , Pages 60-67 ; 09215093 (ISSN) Farshidi, M. H ; Kazeminezhad, M ; Miyamoto, H ; Sharif University of Technology
    2013
    Abstract
    In this work, the 6061 aluminum alloy tubes are severely deformed through a novel method called Tube Channel Pressing (TCP). The ability of this process in improving mechanical properties, grain refinement and microstructural changes of the alloy with different heat treatments before and after TCP process is investigated. Results show that TCP has notable effect on grain refinement and decreases crystallite size of solid solution treated aluminum 6061 material to 52. nm after equivalent strain of 3.09 which is comparable with the measured data from other SPD processes. The strength of the specimens aged before TCP is higher than that of those aged after TCP. The specimens artificially aged... 

    Prediction of flow behavior during warm working

    , Article ISIJ International ; Volume 44, Issue 11 , 2004 , Pages 1867-1873 ; 09151559 (ISSN) Serajzadeh, S ; Sharif University of Technology
    Iron and Steel Institute of Japan  2004
    Abstract
    In this work, the effects of dynamic strain aging and dynamic recovery on metal flow during warm working are studied. Compression experiments are utilized to assess the flow behavior of a low carbon steel under warm deformation conditions. Then, a two dimensional finite element routine is coupled with dynamic recovery and dynamic strain aging models. In this way, the temperature and the velocity fields are predicted during warm working operations with regard to the effects of dynamic recovery and dynamic strain aging. Warm rolling tests are performed in order to verify the modelling results. Comparison between the predicted and measured roll forces shows reliability of the employed model  

    On the influence of deformation rate and cooling media on the static strain aging of a warm-rolled low carbon steel

    , Article International Journal of Material Forming ; Volume 6, Issue 3 , February , 2013 , Pages 417-422 ; 19606206 (ISSN) Koohbor, B ; Ohadi, D ; Sharif University of Technology
    2013
    Abstract
    An investigation was performed on the static strain aging behavior of warm-rolled low carbon steel during a nearly 1-year aging period, from the view point concerning with influence of changing the deformation speed and cooling media. Mechanical response of the examined material during aging period was evaluated through variations occurred in strength and hardness of the warm-deformed steel. It was shown that changing the rolling speed as well as cooling rate, may result in the occurrence of different metallurgical phenomena, consequently altering the aging kinetics of the material. It was also found that by increasing rolling speed, an increase in the value of hardness and UTS takes place,... 

    Multistage strain aging phenomenon of low-carbon steels with rolling pre-strain

    , Article Journal of Materials Research and Technology ; Volume 15 , 2021 , Pages 7136-7144 ; 22387854 (ISSN) Rizehvandy, S ; Sharif University of Technology
    Elsevier Editora Ltda  2021
    Abstract
    In this study, a multistage strain aging method that used rolling pre-strain (compression) was developed to study the effects of temperature, and inter-pass time on static strain aging behavior of low carbon steel. An increase in hardness and strength caused by work hardening due to the forming process and aging at every stage of aging that is calculated separately. To comparing the effects of multistage aging against typical strain aging, the samples were rolled and subjected to the aging process both exist in typical one-stage aging that setting a 20% rolling pre-strain and in multiple stages pre-strain by setting a 5% rolling ratio in four stages. The mechanical properties of aged samples... 

    Modelling the warm rolling of a low carbon steel

    , Article Materials Science and Engineering A ; Volume 371, Issue 1-2 , 2004 , Pages 318-323 ; 09215093 (ISSN) Serajzadeh, S ; Sharif University of Technology
    2004
    Abstract
    Dynamic strain ageing may occur during warm working of low carbon steels and causes significant changes in flow behaviour and microstructure of the deformed material. Therefore, for a proper designing of an industrial forming process performing under warm deformation conditions, the effect of dynamic strain aging should be taken into account. The aim of this investigation is to predict the velocity and the temperature fields within the rolling metal with regard to the dynamic strain aging. For this purpose, compression tests at various temperatures and strain rates have been conducted to evaluate dynamic strain aging in a low carbon steel. Then, by coupling the experimental results with a... 

    Microstructure based modelling of flow behaviour of Al-Mg-Si alloy at different temper conditions

    , Article Materials Science and Technology (United Kingdom) ; Volume 29, Issue 8 , 2013 , Pages 968-974 ; 02670836 (ISSN) Anjabin, N ; Karimi Taheri, A ; Sharif University of Technology
    2013
    Abstract
    A new integrated physically based constitutive model was developed for an age hardenable Al- Mg-Si alloy. The kinetics of precipitation during various stages of aging was modelled. The precipitate features consisted of particle radius and volume fraction obtained from the kinetics model, which was used to compute the alloy yield strength/hardness. A published multiinternal variable workhardening model was improved to take into account the effects of solute solution and precipitates on the alloy hardening capacity after performing different cycles of aging treatment. The flow curves and hardness predicted by the model were in good agreement with the experimental results. The model is able to... 

    Mechanical behavior during aging of plastically deformed AA6061-SiCp composite in different temperatures

    , Article Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ; Volume 226, Issue 4 , 2012 , Pages 322-329 ; 14644207 (ISSN) Sadeghi, I ; Serajzadeh, S
    SAGE  2012
    Abstract
    In this study, the kinetics of aging in AA6061 and AA6061 with 5% volume fraction SiCp were studied and compared. The composite was first produced and homogenized using stir casting technique followed by hot extrusion with the ratio of 18:1. Then, both AA6061 and the composite were aged at three different temperatures including room temperature, 170 °C and 240 °C, while mechanical properties during aging were evaluated employing hardness measurements and tensile testing. Moreover, in order to assess the effect of plastic deformation on the kinetics of aging, a series of samples were first deformed by equal-channel angular pressing immediately after solution treatment and then aged in the...