Loading...
Search for: mechatronics
0.007 seconds
Total 50 records

    A holistic survey on mechatronic Systems in Micro/Nano scale with challenges and applications

    , Article Journal of Micro-Bio Robotics ; 2021 ; 21946418 (ISSN) Ghanbarzadeh Dagheyan, A ; Jalili, N ; Ahmadian, M. T ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Micro/Nano mechatronic systems might be defined as systems that include nano- or micro-scale components. These components can be sensors, actuators, and/or physical structures. Furthermore, the high-precision control laws for such small scales are important to ensure stability, accuracy, and precision in these systems. In this writing, four categories of such small-scale systems are considered by providing multifarious novel or key examples from the literature: control engineering and modeling, design and fabrication, measurement engineering, and sensor/actuator development. The applications discussed in the examples vary from nano-positioners, crucial in systems such as atomic force... 

    Linear active disturbance rejection control from the practical aspects

    , Article IEEE/ASME Transactions on Mechatronics ; 2018 ; 10834435 (ISSN) Ahi, B ; Haeri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this paper, important issues that could come up in practice of Active Disturbance Rejection Control (ADRC) due to a common assumption and some inevitable practical restrictions are investigated. The main idea behind ADRC is modeling effects of both internal uncertainties and external disturbances as an extra state called the total disturbance which is timely estimated. In the majority of recent works, it is assumed that time derivative of total disturbance is bounded. First we prove that, beside the system characteristics, the validity of this assumption strongly depends on the tuning parameters, even in the case of simple classes of linear second order systems. Thus, one should be... 

    Dynamic model identification and control of small turbojet engines using frequency response analysis

    , Article 2012 International Conference onAdvanced Mechatronic Systems, ICAMechS 2012 ; 2012 , Pages 553-558 ; 9780955529382 (ISBN) Banazadeh, A ; Abdollahi Gol, H ; Ramazani, H ; Sharif University of Technology
    2012
    Abstract
    System Identification is a key technology for the development and integration of modern engineering systems including gas turbines. These systems are highly parametric with complex dynamics and nonlinearities. Small turbojet engines are special class of gas turbines that are suitable for scientific purposes and researches in the area of stability, performance, simulation and fuel control design. The motivation behind the presented study is to improve the speed, quality and cost of engine testing and to gain insight into alternatives to traditional identification methods for gas turbines. It discusses the identification of small turbojet engine dynamics by validating the thermodynamic model... 

    Minimum time trajectory optimization of a tail-sitter aerial vehicle using nonlinear programming

    , Article 2012 International Conference onAdvanced Mechatronic Systems, ICAMechS 2012 ; 2012 , Pages 275-280 ; 9780955529382 (ISBN) Banazadeh, A ; Assadian, N ; Saghafi, F ; Sharif University of Technology
    2012
    Abstract
    Aerial tail-sitters have drawn many attentions in recent years. The main challenge of employing these vehicles is to ensure safe and efficient takeoff and landing. The aim of the current study is to develop a gradient-base optimization algorithm for a jet aerial tail-sitter in order to obtain minimum time trajectories in transition flight phases. The vehicle is supposed to utilize thrust vectoring system instead of conventional control surfaces that will pose minimal drawbacks in terms of low speed efficiency and complexity. The time-optimal trajectories are computed using the nonlinear dynamic equations of motion of the vehicle in order to make sure that the vehicle can follow the optimum... 

    Linear multi-variable control technique for smart power management of wind turbines

    , Article 2012 International Conference onAdvanced Mechatronic Systems, ICAMechS 2012 ; 2012 , Pages 559-564 ; 9780955529382 (ISBN) Emami, S. A ; Banazadeh, A ; Sharif University of Technology
    2012
    Abstract
    Variable speed wind turbines are widely used in the modern power industry. These turbines that are usually driven by doubly fed induction generators (DFIG) contain two groups of controlling variables; mechanical variables like pitch angle, and electrical variables like rotor voltage. During the turbine operation, with variable wind speed, power must be managed in two different regimes; power optimization and power limitation. In the current research, initially a non-linear simulation, based on the general wind turbine dynamic model is presented. Then, the desired controllers for both pitch angle and generator voltage components are constructed. To validate turbine behavior and controller... 

    Regulator and tracking system design for a single-rod hydraulic actuator via pole-placement approach

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011, 11 November 2011 through 17 November 2011 ; Volume 7, Issue PARTS A AND B , November , 2011 , Pages 173-181 ; 9780791854938 (ISBN) Moradi, H ; Hajikolaei, K. H ; Bakhtiari Nejad, F ; Sharif University of Technology
    2011
    Abstract
    Due to the nonlinear dynamics of hydraulic systems, applying high performance closed-loop controllers is complicated. In this paper, a single-rod hydraulic actuator is considered in which load displacement (for positioning purposes) is controlled via manipulation of the input voltage to the servo-valve. Dynamics of the servo-valve is described by first and second order transfer functions (named as Models 1 and 2). Through linearization of the system around its operating points, dynamics of the hydraulic actuator is represented in the state space. A full-order observer is designed for on-line states estimation. Then, feedback control system is designed for both regulation and tracking... 

    Design, analysis and manufacturing a double wishbone suspension system with variable camber angle by pneumatics mechanism

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 ; Volume 7, Issue PARTS A AND B , 2011 , Pages 477-483 ; 9780791854938 (ISBN) Pourshams, M ; Mokhlespour, M. I ; Keshavarzi, A ; Hoviat Talab, M ; ASME ; Sharif University of Technology
    2011
    Abstract
    The accuracy of multi dimensional simulation of vehicle dynamics has been significantly increased for both passive and active vehicles which are equipped with advanced electronic components. Recently, one of the subjects that has been considered is increasing the car safety in design. Therefore, many efforts have been done to increase vehicle stability especially during the turn. It is also very important in three wheel car. One of the most important efforts is adjusting the camber angle in the car suspension system. Camber angle as well as the vehicle stability has major effects on the wheel slip, reducing rubber abrasion, acceleration and braking. Since the increase or decrease in the... 

    Nonlinear vibration analysis of a micro beam exposed to an external flow

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 ; Volume 7, Issue PARTS A AND B , 2011 , Pages 643-646 ; 9780791854938 (ISBN) Mazaheri, H ; Hosseinzadeh, A ; Ahmadian, M. T ; Barari, A ; Sharif University of Technology
    2011
    Abstract
    In this paper, nonlinear vibration of a micro cantilever exposed to a constant velocity flow is studied. In order to obtain vibration frequency and time response of the micro beam the variational iteration method is used as a novel tool for solving nonlinear differential equations. Results of the analytical solution are compared with those obtained by Runge-Kutta method which shows very good agreement between them. Results confirm that frequency of vibration depends on the flow velocity. Also, the high sensitivity of the vibration frequency to the flow velocity means that it can be an effective indicator of velocity  

    Multi sensing grasper for minimally invasive surgery

    , Article IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 3 July 2011 through 7 July 2011, Budapest ; July , 2011 , Pages 344-349 ; 9781457708381 (ISBN) Fattahi, S. J ; Zabihollah, A ; Adldoost, H ; Sharif University of Technology
    2011
    Abstract
    In the present work, a multi sensing grasper has been developed for minimally invasive surgery with embedded ZnO piezoelectric and Fiber Bragg Grating sensors. In this model, a sensing patch equipped with three FBG sensors to sense the temperature in rage of 800 n.m and two separated FBG in range of 1550 m.m to detect the displacement in x and y directions. ZnO piezoelectric is highly sensitive to time and provides a good resistance to temperature. Therefore, this sensor is used for measuring the rate of strain and creep coefficient. A finite element approach based on the viscous material theory and plane displacement theory of anisotropic materials has been utilized to obtain the compliance... 

    Efficient design of a torque actuator for lower extremity exoskeleton based on muscle function analysis

    , Article 2011 International Conference on Mechatronics and Materials Processing, ICMMP 2011, Guangzhou, 18 November 2011 through 20 November 2011 ; Volume 328-330 , 2011 , Pages 1041-1044 ; 10226680 (ISSN) ; 9783037852385 (ISBN) Safavi, S ; Selk Ghafari, A ; Meghdari, A ; Guangzhou University ; Sharif University of Technology
    2011
    Abstract
    Several lower extremity exoskeletal systems have been developed for augmentation purpose. Common actuators, have important drawbacks such as complexity, and poor torque capacities. The main scope of this research is to propose a series elastic actuator for lower extremity exoskeletal system which was designed based on muscle functional analysis. For this purpose, a biomechanical framework consisting of a musculoskeletal model with ten degrees-of-freedom actuated by eighteen Hill-type musculotendon actuators per leg is utilized to perform the muscle functional analysis for common daily human activities. The simulation study illustrated functional differences between flexor and extensor... 

    Intelligent vibration control of micro-cantilever beam in MEMS

    , Article 2011 IEEE International Conference on Mechatronics, ICM 2011 - Proceedings, 13 April 2011 through 15 April 2011, Istanbul ; April , 2011 , Pages 336-341 ; 9781612849836 (ISBN) Sarrafan, A ; Zareh, S. H ; Zabihollah, A ; Khayyat, A. A ; Sharif University of Technology
    2011
    Abstract
    Considerable attention has been devoted recently to vibration control using intelligent materials as sensor/actuator. An intelligent control technique using a neural network is proposed for vibration control of micro-cantilever beam with bonded piezoelectric sensor and actuator. Structure modal characteristic analysis is done to determine the optimal configuration of piezoelectric sensor and actuator. With the piezoelectric elements are surface-bonded near the same position to the fixed end of micro-cantilever beam, an optimal controller, linear quadratic Gaussian (LQG), and an intelligent strategy based on neural network are investigated. Finally, the simulation results are given to... 

    Performance of an offshore platform with MR dampers subjected to wave

    , Article 2011 IEEE International Conference on Mechatronics, ICM 2011 - Proceedings, 13 April 2011 through 15 April 2011 ; April , 2011 , Pages 242-247 ; 9781612849836 (ISBN) Sarrafan, A ; Hamid Zareh, S ; Khayyat, A. A ; Zabihollah, A ; Sharif University of Technology
    2011
    Abstract
    The vibration suppression of semi-actively controlled jacket-type offshore platforms using Magnetorheological (MR) dampers is studied. The main goal of using MR damper system is to reduce vibration caused by wave hydrodynamic forces. A fixed jacket-type offshore platform affected by wave-induced hydrodynamic forces and controlled by MR dampers is modelled as a semi-active controlled system with 30 DOFs. In comparison with earlier studies, an improvement in problem modelling is made. Based on the wave theory and Morison equation, an exosystem is designed to simulate regular wave forces. The necessary input voltage to MR dampers to generate desired damping force is derived by clipped optimal... 

    Linear quadratic Gaussian application and clipped optimal algorithm using for semi active vibration of passenger car

    , Article 2011 IEEE International Conference on Mechatronics, ICM 2011, Istanbul, 13 April 2011 through 15 April 2011 ; 2011 , Pages 122-127 ; 9781612849836 (ISBN) Zareh, S. H ; Sarrafan, A ; Jahromi, A. F ; Khayyat, A. A ; Sharif University of Technology
    2011
    Abstract
    A novel semi active control system for eleven Degrees of Freedom passenger car's suspension system using Magneto rheological damper is presented. The considered suspension system is modeled using mass spring damper model. The semi active vibration control is designed to reduce the amplitude of vehicle's vibration due to by road profile. The applied control strategies are based on a Linear Quadratic Gaussian optimal control algorithm to obtain desired damping forces of MR dampers. In considered system, the damping coefficient of the shock absorber changes actively through inducing magnetic field. The necessary input voltage to MR dampers to generate desired damping forces are derived using... 

    Prosody generation in TTS system for Azeri

    , Article IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 6 July 2010 through 9 July 2010, Montreal, QC ; 2010 , Pages 1335-1338 ; 9781424480319 (ISBN) Damadi, M. S ; Zahir Azami, B ; Eslami, M ; Sharif University of Technology
    2010
    Abstract
    Naturalness in Text-to-Speech (TTS) systems is very important in achieving high quality waveform. The naturalness of the waveform is highly correlated to phonetic coverage and prosodic features such as loudness, duration and pitch. This paper addresses the implementation of a prosodic TTS for Azeri. The TTS system to which the prosodic information is added, is a concatenative synthesizer based on diphones. For adding prosody and increasing naturalness, we have obtained a primary pitch curve for each word, based on the location of the stressed syllable. Also using sentence type effects, the final pitch contour has been modified. As far as we know, the output speech that is produced with this... 

    The control of a thermal system with large time delay using of LQG and lead-compensator

    , Article 2010 IEEE International Conference on Mechatronics and Automation, ICMA 2010, 4 August 2010 through 7 August 2010 ; August , 2010 , Pages 1842-1847 ; 9781424451418 (ISBN) Zareh, S. H ; Jahromi, A. F ; Abbasi, M ; Khayyat, A. A ; Sharif University of Technology
    2010
    Abstract
    This paper will first describe the Linear-Quadratic-Gaussian (LQG) and Lead-Compensator when the Proportional-Integral-Derivative (PID) controllers are inactive for procedures that have large delay time (LDT) in transfer stage. Therefore in those states, LQG and Lead Compensator perform better than the PID controllers. The constrained LQG is optimal and stabilizing. The solution algorithm is guaranteed to terminate in finite time with a computational cost that has a reasonable upper bound compared to the minimal cost for computing the optimal solution. In this work all actual working area condition for instance noises and disturbances are considered. Eventually, LQG and Lead Compensator have... 

    The select of a permanent magnet brushed DC motor with optimal controller for providing propellant of @home mobile robot

    , Article 2010 IEEE International Conference on Mechatronics and Automation, ICMA 2010, 4 August 2010 through 7 August 2010 ; August , 2010 , Pages 1137-1141 ; 9781424451418 (ISBN) Zareh, S. H ; Khosroshahi, M ; Abbasi, M ; Ghaemi Osgouie, K ; Sharif University of Technology
    2010
    Abstract
    This paper first will describe @Home Mobile Robot and DC motors. In continuous, is designed a Direct current (DC) motor for special task due to specific speed diagram for considered robot. This robot wants to work in intermittent operation condition. Finally is done a speed control on a selected permanent magnet brushed DC motor using of Linear-Quadratic-Regulator (LQR), Linear-Quadratic-Gaussian (LQG) and Fuzzy logic controllers  

    On the dynamics of the flexible robot arm in a real deployment profile

    , Article 2010 IEEE International Conference on Robotics, Automation and Mechatronics, RAM 2010, Singapore, 28 June 2010 through 30 June 2010 ; 2010 , Pages 112-117 ; 9781424465033 (ISBN) Bagheri Ghaleh, P ; Malaek, S. M ; Sharif University of Technology
    2010
    Abstract
    The dynamics of the flexible robot arm subjected to tip mass during an actual deployment is studied. The Euler-Bernoulli beam theory and the real deployment are considered in the simulation. A new real axial velocity profile is developed. This new suggested profile simulates the actual deployment such that the arm movement starts from immovability and after attaining the final required length comes back again to the static state. Using Lagrange's equation, the equations of motion of the system are derived to study the system dynamics in this suggested deployment profile. A series approximation is used to represent the lateral elastic displacements. Using variables separation and also some... 

    Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van der Waals forces

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 224, Issue 9 , 2010 , Pages 2037-2047 ; 09544062 (ISSN) Moghimi-Zand, M ; Ahmadian, M.T ; Sharif University of Technology
    2010
    Abstract
    In this study, influences of intermolecular forces on the dynamic pull-in instability of electrostatically actuated beams are investigated. The effects of midplane stretching, electrostatic actuation, fringing fields, and intermolecular forces are considered. The boundary conditions of the beams are clamped-free and clamped-clamped. A finite-element model is developed to discretize the governing equations, and Newmark time discretization is then employed to solve the discretized equations. The static pull-in instability is investigated to validate the model. Finally, dynamic pull-in instability of cantilevers and double-clamped beams are studied considering the Casimir and van der Waals... 

    Swarm aggregation using emotional learning based intelligent controller

    , Article 2009 6th International Symposium on Mechatronics and its Applications, ISMA 2009, Sharjah, 23 March 2009 through 26 March 2009 ; 2009 ; 9781424434817 (ISBN) Etemadi, S ; Vatankhah, R ; Alasty, A ; Vossoughi, G ; Sharif University of Technology
    2009
    Abstract
    In this paper, we consider a control strategy of multi-robot systems, or simply, swarms, based on emotional control technique. First, we briefly discuss a "kinematic" swarm model in n-dimensional space introduced in an earlier paper. In that model, motion of every swarm member is governed by predefined inter-individual interactions. Limitations of every member's field of view are also considered in that model. After that, we consider a general model for vehicle dynamics of each swarm member, and use emotional control theory to force their motion to obey the dynamics of the kinematic model. Based on the kinematic model, stability (cohesion) analysis is performed and coordination controller is... 

    Vibration control of vehicle suspension system using adaptive critic-based neurofuzzy controller

    , Article 2009 6th International Symposium on Mechatronics and its Applications, ISMA 2009, Sharjah, 23 March 2009 through 26 March 2009 ; 2009 ; 9781424434817 (ISBN) Vatankhah, R ; Rahaeifard, M ; Alasty, A ; Sharif University of Technology
    2009
    Abstract
    This paper presents an active suspension system for passenger cars, using adaptive critic-based neurofuzzy controller. The model is described by a system with seven degrees of freedom. The car is subjected to excitation from a rode surface and wheel unbalance. The main superiority of the proposed controller over previous analogous fuzzy logic controller designed approaches, e.g., genetic fuzzy logic controller, is its online tuning characteristic and remarkable reduced amount of computations used for parameter adaptation, which makes it desirable for real time applications. Considering the simplicity of this controller and its independence from the system model, this control method has the...