Loading...
Search for: inhibitor
0.01 seconds
Total 118 records

    Recent clinical findings on the role of kinase inhibitors in COVID-19 management

    , Article Life Sciences ; Volume 306 , 2022 ; 00243205 (ISSN) Malekinejad, Z ; Baghbanzadeh, A ; Nakhlband, A ; Baradaran, B ; Jafari, S ; Bagheri, Y ; Raei, F ; Montazersaheb, S ; Farahzadi, R ; Sharif University of Technology
    Elsevier Inc  2022
    Abstract
    The highly pathogenic, novel coronavirus disease (COVID-19) outbreak has emerged as a once-in-a-century pandemic with poor consequences, urgently calling for new therapeutics, cures, and supportive interventions. It has already affected over 250 million people worldwide; thereby, there is a need for novel therapies to alleviate the related complications. There is a paradigm shift in developing drugs and clinical practices to combat COVID-19. Several clinical trials have been performed or are testing diverse pharmacological interventions to alleviate viral load and complications such as cytokine release storm (CRS). Kinase-inhibitors have appeared as potential antiviral agents for COVID-19... 

    Distinct dynamics of migratory response to pd-1 and ctla-4 blockade reveals new mechanistic insights for potential t-cell reinvigoration following immune checkpoint blockade

    , Article Cells ; Volume 11, Issue 22 , 2022 ; 20734409 (ISSN) Safaeifard, F ; Goliaei, B ; Aref, A. R ; Foroughmand-Araabi, M. H ; Goliaei, S ; Lorch, J ; Jenkins, R. W ; Barbie, D. A ; Shariatpanahi, S. P ; Rüegg, C ; Sharif University of Technology
    MDPI  2022
    Abstract
    Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1), two clinically relevant targets for the immunotherapy of cancer, are negative regulators of T-cell activation and migration. Optimizing the therapeutic response to CTLA-4 and PD-1 blockade calls for a more comprehensive insight into the coordinated function of these immune regulators. Mathematical modeling can be used to elucidate nonlinear tumor–immune interactions and highlight the underlying mechanisms to tackle the problem. Here, we investigated and statistically characterized the dynamics of T-cell migration as a measure of the functional response to these pathways. We used a previously... 

    Investigation of cancer response to chemotherapy: a hybrid multi-scale mathematical and computational model of the tumor microenvironment

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 21, Issue 4 , 2022 , Pages 1233-1249 ; 16177959 (ISSN) Nikmaneshi, M. R ; Firoozabadi, B ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Tumor microenvironment (TME) is a multi-scale biological environment that can control tumor dynamics with many biomechanical and biochemical factors. Investigating the physiology of TME with a heterogeneous structure and abnormal functions not only can achieve a deeper understanding of tumor behavior but also can help develop more efficient anti-cancer strategies. In this work, we develop a hybrid multi-scale mathematical model of TME to simulate the progression of a three-dimensional tumor and elucidate its response to different chemotherapy approaches. The chemotherapy approaches include multiple low dose (MLD) of anti-cancer drug, maximum tolerated dose (MTD) of anti-cancer drug,... 

    Insight into the corrosion inhibition of Biebersteinia multifida root extract for carbon steel in acidic medium

    , Article Science of the Total Environment ; Volume 836 , 2022 ; 00489697 (ISSN) Khayatkashani, M ; Soltani, N ; Tavakkoli, N ; Nejatian, A ; Ebrahimian, J ; Mahdi, M. A ; Salavati Niasari, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this project, the protective effect of Biebersteinia multifida root extract (BMRE) against corrosion of 1018 low carbon steel (1018LCS) in HCl solutions was appraised by assessing weight loss, electrochemical impedance spectroscopy (EIS), and polarization at 25 °C. The maximum inhibitory efficacy for the concentration of 1 g/l of the BMRE was 92.8% at 25 °C after 2 h and increased to 95.3% after 24 h of immersion. Polarization experiments have shown that the extract in acidic solutions can act as a mixed corrosion inhibitor. The corrosion inhibitory efficacy of BMRE decreased with increasing temperature, and at all temperature settings studied, the adsorption of BMRE molecules on 1018 LCS... 

    Chemotherapeutic effects of Apigenin in breast cancer: Preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticles

    , Article Biotechnology Reports ; Volume 34 , 2022 ; 2215017X (ISSN) Adel, M ; Zahmatkeshan, M ; Akbarzadeh, A ; Rabiee, N ; Ahmadi, S ; Keyhanvar, P ; Rezayat, S. M ; Seifalian, A. M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    This review highlights using nanotechnology in increasing the bioavailability of AP (Apigenin) to enhance its therapeutic efficacy in breast cancer treatment. Breast cancer is one of the most leading causes of cancer death in women both in developed and developing countries. According to several epidemiological and clinical trial studies that indicate progestin-stimulated breast cancer in post-menopausal women; it is necessary to determine compounds to suppress or attenuate the tumor-promoting effects of progestins in breast cells. For this purpose, using the natural anti-progestins, including AP compared with the chemical ones could be significantly effective due to the lack of toxicities... 

    Graphene-based nanomaterials in fighting the most challenging viruses and immunogenic disorders

    , Article ACS Biomaterials Science and Engineering ; Volume 8, Issue 1 , 2022 , Pages 54-81 ; 23739878 (ISSN) Ebrahimi, M ; Asadi, M ; Akhavan, O ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Viral diseases have long been among the biggest challenges for healthcare systems around the world. The recent Coronavirus Disease 2019 (COVID-19) pandemic is an example of how complicated the situation can get if we are not prepared to combat a viral outbreak in time, which brings up the need for quick and affordable biosensing platforms and vast knowledge of potential antiviral effects and drug/gene delivery opportunities. The same challenges have also existed for nonviral immunogenic disorders. Nanomedicine is considered a novel candidate for effectively overcoming these worldwide challenges. Among the versatile nanomaterials commonly used in biomedical applications, graphene has recently... 

    Epoxy nanocomposite coating based on calcium zinc phosphate with dual active/barrier corrosion mitigation properties

    , Article Progress in Organic Coatings ; Volume 163 , 2022 ; 03009440 (ISSN) Alibakhshi, E ; Haddadi, S. A ; Motlagh, A. L ; Ghaderi, M ; Ramezanzadeh, B ; Mahdavian, M ; Arjmand, M ; Jalili, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this paper, a high-performance epoxy nanocomposite with dual active/barrier protection ability based on calcium zinc phosphate (CZP) nanopigment was fabricated. Then chemistry, morphology, and anti-corrosion ability of the commercial zinc phosphate (ZP) and CZP pigments were studied. By electrochemical techniques, the inhibition potency of the CZP nanopigment was examined in a NaCl solution on mild steel (MS) substance and compared with that of ZP. Results revealed a higher corrosion inhibition degree of the CZP compared to the ZP. The growth of a protective layer on the metal coupons exposed to the CZP extract was illustrated by X-ray photoelectron spectroscopy (XPS), field emission... 

    Synthesis and characterization of 1-amidino-O-alkylureas metal complexes as α- glucosidase Inhibitors: Structure-activity relationship, molecular docking, and kinetic studies

    , Article Journal of Molecular Structure ; Volume 1250 , 2022 ; 00222860 (ISSN) Moghaddam, F. M ; Daneshfar, M ; Daneshfar, Z ; Iraji, A ; Samandari Najafabad, A ; Faramarzi, M. A ; Mahdavi, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In the present study, metal complexes of 1-amidino-O-alkylureas were designed, synthesized and characterized by elemental analyses, FT-IR spectra, XRD, Mass analyses and scanning electron microscopy (SEM). All synthesized complexes were screen as α-Glucosidase inhibitors. According to the in vitro results, the Cu (II) complexes showed superior potency compared to other tested metal complexes. Particularly, [Cu(L-Me)2](Cl)2 (1b) showed the strongest inhibition against α-Glucosidase with an IC50 value of 2.75 ± 0.3 µM which was comparable to that of acarbose (IC50 = 750 µM). These findings are supported by the ligands and enzyme interactions through molecular docking. © 2021 Elsevier B.V  

    Corrosion inhibition of mild steel with tolyltriazole

    , Article Materials Research ; Volume 24, Issue 4 , 2021 ; 15161439 (ISSN) Fathabadi, H. E ; Ghorbani, M ; Mokarami Ghartavol, H ; Sharif University of Technology
    Universidade Federal de Sao Carlos  2021
    Abstract
    Tolyltriazole (TTA) is a well-defined corrosion inhibitor for copper and copper alloys. However, there is little literature about its corrosion inhibition performance for mild steels in corrosive environments. This paper studied the electrochemical behavior of TTA in 0.5 M HCl solutions. Also, the morphology and nature of TTA layers on the steel surface were investigated. Electrochemical results showed that TTA is an excellent corrosion inhibitor for mild steel in acidic media with an efficiency of 91% for 0.07 M concentration. The results also indicated that TTA is a mixed-type inhibitor. XRD analysis revealed that the inhibition mechanism of TTA is based on the formation of an organic film... 

    Expression of PIAS genes in migraine patients

    , Article Journal of Molecular Neuroscience ; Volume 71, Issue 10 , 2021 , Pages 2053-2059 ; 08958696 (ISSN) Ghafouri Fard, S ; Hesami, O ; Nazer, N ; Sayad, A ; Taheri, M ; Sharif University of Technology
    Humana Press Inc  2021
    Abstract
    Migraine is a complex disabling condition which is associated with dysregulation of several pathways particularly those being associated with immune responses. In order to assess contribution of protein inhibitor of activated STAT (PIAS) in the pathogenesis of migraine, we quantified expression levels of PIAS1–PIAS4 genes in the circulation of patients with migraine compared with controls. Expression of PIAS1 was substantially lower in total migraineurs compared with controls (ratio of mean expressions (RME) = 0.18, SE = 0.29, P value < 0.001) and in both male and female migraineurs compared with sex-matched controls. Expression of PIAS2 was lower in migraineurs without aura compared with... 

    Expression analysis of protein inhibitor of activated stat in inflammatory demyelinating polyradiculoneuropathy

    , Article Frontiers in Immunology ; Volume 12 , 2021 ; 16643224 (ISSN) Ghafouri Fard, S ; Hussen, B. M ; Nicknafs, F ; Nazer, N ; Sayad, A ; Taheri, M ; Sharif University of Technology
    Frontiers Media S.A  2021
    Abstract
    Protein inhibitors of activated STAT (PIAS) are involved in the regulation of the JAK/STAT signaling pathway and have interactions with NF-κB, p73 and p53. These proteins regulate immune responses; therefore dysregulation in their expression leads to several immune-mediated disorders. In the present study, we examined expression of PIAS1-4 in peripheral blood of patients with acute/chronic inflammatory demyelinating polyradiculoneuropathy (AIDP/CIDP) compared with healthy subjects. We demonstrated down-regulation of all PIAS genes in both AIDP and CIDP cases compared with controls. Similarly, comparisons in gender-based groups revealed down-regulation of these gene0s in patients of each... 

    Defining microRNA signatures of hair follicular stem and progenitor cells in healthy and androgenic alopecia patients

    , Article Journal of Dermatological Science ; Volume 101, Issue 1 , 2021 , Pages 49-57 ; 09231811 (ISSN) Mohammadi, P ; Nilforoushzadeh, M. A ; Youssef, K. K ; Sharifi Zarchi, A ; Moradi, S ; Khosravani, P ; Aghdami, R ; Taheri, P ; Hosseini Salekdeh, G ; Baharvand, H ; Aghdami, N ; Sharif University of Technology
    Elsevier Ireland Ltd  2021
    Abstract
    Background: The exact pathogenic mechanism causes hair miniaturization during androgenic alopecia (AGA) has not been delineated. Recent evidence has shown a role for non-coding regulatory RNAs, such as microRNAs (miRNAs), in skin and hair disease. There is no reported information about the role of miRNAs in hair epithelial cells of AGA. Objectives: To investigate the roles of miRNAs affecting AGA in normal and patient's epithelial hair cells. Methods: Normal follicular stem and progenitor cells, as well as follicular patient's stem cells, were sorted from hair follicles, and a miRNA q-PCR profiling to compare the expression of 748 miRNA (miRs) in sorted cells were performed. Further, we... 

    Chemo-mechanistic multi-scale model of a three-dimensional tumor microenvironment to quantify the chemotherapy response of cancer

    , Article Biotechnology and Bioengineering ; Volume 118, Issue 10 , 2021 , Pages 3871-3887 ; 00063592 (ISSN) Nikmaneshi, M. R ; Firoozabadi, B ; Mozafari, A ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Exploring efficient chemotherapy would benefit from a deeper understanding of the tumor microenvironment (TME) and its role in tumor progression. As in vivo experimental methods are unable to isolate or control individual factors of the TME, and in vitro models often cannot include all the contributing factors, some questions are best addressed with mathematical models of systems biology. In this study, we establish a multi-scale mathematical model of the TME to simulate three-dimensional tumor growth and angiogenesis and then implement the model for an array of chemotherapy approaches to elucidate the effect of TME conditions and drug scheduling on controlling tumor progression. The... 

    Review on alzheimer's disease: inhibition of amyloid beta and tau tangle formation

    , Article International Journal of Biological Macromolecules ; Volume 167 , 2021 , Pages 382-394 ; 01418130 (ISSN) Ashrafian, H ; Hadi Zadeh, E ; Hasan Khan, R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    It is reported that approximately 40 million people are suffering from dementia, globally. Dementia is a group of symptoms that affect neurons and cause some mental disorders, such as losing memory. Alzheimer's disease (AD) which is known as the most common cause of dementia, is one of the top medical care concerns across the world. Although the exact sources of the disease are not understood, is it believed that aggregation of amyloid-beta (Aβ) outside of neuron cells and tau aggregation or neurofibrillary tangles (NFTs) formation inside the cell may play crucial roles. In this paper, we are going to review studies that targeted inhibition of amyloid plaque and tau protein tangle formation,... 

    Epoxy nanocomposite coatings with enhanced dual active/barrier behavior containing graphene-based carbon hollow spheres as corrosion inhibitor nanoreservoirs

    , Article Corrosion Science ; Volume 185 , 2021 ; 0010938X (ISSN) Haddadi, S. A ; Ramazani Saadatabadi, A ; Mahdavian, M ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Graphene-based carbon hollow spheres (CHSs) fabrication, doped with 2-mercaptobenzimidazole (MBI) was successfully done in previous work. The active/barrier corrosion protection performance (CPP) of epoxy coatings was evaluated using salt spray test, electrochemical impedance spectroscopy (EIS), and scanning vibrating electrode technique (SVET). Results proved the active/barrier CPP enhancement of epoxy coatings in the presence of 3 wt. % MBI@CHSs. While the presence of MBI and empty CHSs in epoxy coatings did not further improve the active performance. An improvement in the adhesion loss of the epoxy coating, ca. 58 %, was observed in the presence of 3 wt. % MBI@CHSs. © 2021  

    Corrosion resistance evaluation of rebars with various primers and coatings in concrete modified with different additives

    , Article Construction and Building Materials ; Volume 262 , 2020 Afshar, A ; Jahandari, S ; Rasekh, H ; Shariati, M ; Afshar, A ; Shokrgozar, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Corrosion of steel rebars in concrete can reduce the durability of concrete structures in coastal environments. The corrosion rate of these concrete structures can be reduced by using suitable concrete additives and coating on rebars. This paper investigates the corrosion resistance of steel rebars by the addition of pozzolanic materials including fly ash, silica fume, polypropylene fibers, and industrial 2-dimethylaminoethanol (FerroGard 901) inhibitors to the concrete mixture. Three different types of rebars including mild steel rebar st37, and two stainless steel reinforcements, AISI 304 and AISI 316, were used. Various types of primer and coating including alkyd based primer, hot-dip... 

    Fabrication of hollow carbon spheres doped with zinc cations to enhance corrosion protection of organosilane coatings

    , Article Surfaces and Interfaces ; Volume 21 , 2020 Behgam, R ; Mahdavian, M ; Ramazani, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Hollow carbon spheres (HCS) are spherical forms of carbon materials that can be used as nanocontainers due to their empty cores. In this work, zinc cations were doped in HCS (Zn@HCS) from an aquatic solution of zinc nitrate salt. Corrosion inhibition of released zinc cations in saline solution on bare mild steel samples was assessed by EIS, polarization, and electrochemical noise measurements. The sample surfaces were characterized through FTIR spectroscopy and grazing incidence XRD analyses after exposure to the test solutions. The results showed improvement in the corrosion resistance in the presence of Zn@HCS in a long immersion period. Zn@HCS were also incorporated in organosilane... 

    Application of sustainable saffron purple petals as an eco-friendly green additive for drilling fluids: A rheological, filtration, morphological, and corrosion inhibition study

    , Article Journal of Molecular Liquids ; Volume 315 , 2020 Ghaderi, S ; Haddadi, S. A ; Davoodi, S ; Arjmand, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, effects of dried saffron purple petals (SPP) powder were examined on the rheological, fluid loss, and corrosion inhibition properties of bentonite-based drilling fluids. Drilling fluids containing different amounts of the SPP powder were prepared and their rheological behavior was investigated via the rotary viscometry and rheometric mechanical spectroscopy (RMS). Rotary viscometer results were fitted with Power-law, Bingham plastic, and Herschel-Bulkley models and the obtained data were compared with that of the base mud. All models fitted the rotary viscometer data with the determination coefficients higher than 0.93. The presence of 3 wt% of the SSP in the fluid... 

    Design of peptide-based inhibitor agent against amyloid-β aggregation: Molecular docking, synthesis and in vitro evaluation

    , Article Bioorganic Chemistry ; Volume 102 , September , 2020 Jokar, S ; Erfani, M ; Bavi, O ; Khazaei, S ; Sharifzadeh, M ; Hajiramezanali, M ; Beiki, D ; Shamloo, A ; Sharif University of Technology
    Academic Press Inc  2020
    Abstract
    Formation of the amyloid beta (Aβ) peptide aggregations represents an indispensable role in appearing and progression of Alzheimer disease. β-sheet breaker peptides can be designed and modified with different amino acids in order to improve biological properties and binding affinity to the amyloid beta peptide. In the present study, three peptide sequences were designed based on the hopeful results of LIAIMA peptide and molecular docking studies were carried out onto the monomer and fibril structure of amyloid beta peptide using AutoDock Vina software. According to the obtained interactions and binding energy from docking, the best-designed peptide (D-GABA-FPLIAIMA) was chosen and... 

    Nanodiamond loaded with corrosion inhibitor as efficient nanocarrier to improve anticorrosion behavior of epoxy coating

    , Article Journal of Industrial and Engineering Chemistry ; Volume 83 , 2020 , Pages 153-163 Rahmani, P ; Shojaei, A ; Pirhady Tavandashti, N ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2020
    Abstract
    In the present study, thermally oxidized nanodiamond (OND) was first modified non-covalently with dodecylamine (DDA) as corrosion inhibitor. In this respect, reactive primary amine of DDA molecule with high isoelectric point (IEP) could interact easily with negative charge carboxylic acid groups of OND. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) proved that OND nanoparticle was successfully functionalized by DDA up to approximately 5 wt% grafting contnet. Both OND and dodecylamine modified OND (DND) were loaded in epoxy (EP)/polyamine hardener matrix at the same concentration of 1 wt% and applied on mild steel substrate. Morphology of EP-DND and...