Loading...
Search for: fluid-structure-interaction
0.013 seconds
Total 106 records

    On nonlinear free vibration of externally compressible fluid-loaded sandwich cylindrical shells: Curvature nonlinearity in bending and impermeability condition

    , Article Thin-Walled Structures ; Volume 179 , 2022 ; 02638231 (ISSN) Taati, E ; Fallah, F ; Ahmadian, M. T ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    A nonlinear fluid–structure interaction (FSI) model is presented for nonlinear vibration analysis of sandwich cylindrical shells subjected to an external compressible flow by considering the curvature nonlinearity in impermeability condition and bending. The sandwich shells are made of two face sheets and a central core of advanced materials including functionally graded (FG), metal foam, and anisogrid lattice composite. Based on the Kirchhoff–love hypotheses with the geometric nonlinearities in the normal strain and curvature of mid-surface, one decoupled nonlinear integral–differential equation is obtained for axisymmetric bending vibration of sandwich cylindrical shells. For the first... 

    Numerical simulation of vortex-induced vibration of a smooth circular cylinder at the subcritical regime

    , Article Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment ; Volume 236, Issue 4 , 2022 , Pages 916-937 ; 14750902 (ISSN) Abbaspour, M ; Nemati Kourabbasloo, N ; Mohtat, P ; Tanha, A ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    The present paper focuses on the simulation of vortex-induced vibration (VIV) of a rigid, smooth circular cylinder with elastic supports subject to a cross-flow at the subcritical regime of Reynolds number, 30,000

    Analytical and numerical biaxial bending analysis of deepwater riser due to vortex-induced vibration

    , Article Journal of Marine Science and Technology (Japan) ; Volume 27, Issue 1 , 2022 , Pages 492-507 ; 09484280 (ISSN) Tabeshpour, M. R ; Komachi, Y ; Sharif University of Technology
    Springer Japan  2022
    Abstract
    Previous studies of analysis and prediction of marine risers responses usually focus on vortex-induced vibration (VIV) of cross-flow (CF) direction rather than in-line (IL). Recent studies show that responses of IL direction tend to dominate in some cases. Responses of long riser due to biaxial bending of IL and CF VIV are investigated. Closed-form formulas are derived for estimating maximum normal stress due to the biaxial moment of CF/IL VIV and relations for estimating biaxial stress using CF values are presented. Analytical results are compared with numerical results of the time domain model and a good correlation is observed. It is shown that for tension and bending-controlled modes of... 

    Investigating the behavior of cracks in welded zones of supporting structure of spherical pressure vessel under seismic loading

    , Article Journal of Constructional Steel Research ; Volume 191 , 2022 ; 0143974X (ISSN) Tafazoli, S ; Ghazi, M ; Adibnazari, S ; Rofooei, F. R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this paper, the numerical studies on the semi-elliptical crack behavior in different locations of welded zones in the supporting structure of a spherical pressure vessel under an earthquake are presented. The cracks in the welded zones of supporting structures under earthquake effects may jeopardize the safety of spherical pressure vessels and result in catastrophic failure. A detailed finite element sub-modeling technique is carried out to compute the mixed-mode stress intensity factors along the crack front. Furthermore, crack behavior with different aspect ratios a/c: 0.25, 0.5, and 0.75 at the weld and the heat-affected zone of the supporting structure is evaluated. The... 

    Targeted drug delivery of magnetic microbubble for abdominal aortic aneurysm: an in silico study

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 21, Issue 2 , 2022 , Pages 735-753 ; 16177959 (ISSN) Shamloo, A ; Ebrahimi, S ; Ghorbani, G ; Alishiri, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Targeted drug delivery (TDD) to abdominal aortic aneurysm (AAA) using a controlled and efficient approach has recently been a significant challenge. In this study, by using magnetic microbubbles (MMBs) under a magnetic field, we investigated the MMBs performance in TDD to AAA based on the amount of surface density of MMBs (SDMM) adhered to the AAA lumen. The results showed that among the types of MMBs studied in the presence of the magnetic field, micromarkers are the best type of microbubble with a −50 % increase in SDMM adhered to the critical area of AAA. The results show that applying a magnetic field causes the amount of SDMM adhered to the whole area of AAA to increase −1.54 times... 

    Investigation of coronary artery tortuosity with atherosclerosis: A study on predicting plaque rupture and progression

    , Article International Journal of Mechanical Sciences ; Volume 223 , 2022 ; 00207403 (ISSN) Ebrahimi, S ; Fallah, F ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This study investigated the effects of different patterns of coronary artery tortuosity (CAT) on the stress concentration of the plaques and the blood flow pattern inside an atherosclerotic artery to predict the risk of plaque rupture and progression. Four different loadings of the coronary artery, including pulsatile blood pressure as well as one-end twist around the artery axis at blood pressures of 74, 100, and 120 mmHg were considered. No study has addressed bent and twist buckling of an atherosclerotic artery considering pulsatile flow (for bent buckling), fluid-solid interaction, and different geometrical parameters of the plaque. The results showed that C-shape tortuosity under... 

    Nonlinear vibrations and stability of rotating cylindrical shells conveying annular fluid medium

    , Article Thin-Walled Structures ; Volume 171 , 2022 ; 02638231 (ISSN) Abdollahi, R ; Firouz abadi, R. D ; Rahmanian, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This study aims to investigate the nonlinear dynamic characteristics of annular cylinders coupled with a fluid medium to identify the effective parameters on stability margins at different rotation speeds. To achieve this, stability and nonlinear vibrations of rotating cylindrical shells containing incompressible annular fluid are considered. The fluid medium is bounded by a rigid external cylinder. Sanders–Koiter kinematic assumptions are utilized to determine the geometrically nonlinear structural equations of motion. These equations are then used to investigate finite amplitude vibrations of various fluid-loaded shells at different states. A penalty approach is introduced by using... 

    A hybrid model for simulation of fluid-structure interaction in water entry problems

    , Article Physics of Fluids ; Volume 33, Issue 1 , 2021 ; 10706631 (ISSN) Moradi, H ; Rahbar Ranji, A ; Haddadpour, H ; Moghadas, H ; Sharif University of Technology
    American Institute of Physics Inc  2021
    Abstract
    A hydroelastic hybrid model is developed to simulate the fluid-structure interaction in water entry problems using the partitioned approach. The interactions between a flat plate and the water are modeled by a hydroelastic model using explicit and implicit couplings. Both couplings are unstable due to numerical instability associated with the fluid added mass. To overcome the instability, an extended Wagner's model is combined with the hydroelastic model, and a hybrid model is developed. The extended Wagner's model is the extension of the classical Wagner's model that is used to estimate the fluid inertial, damping, and restoring forces of a flexible plate within the potential flow theory.... 

    Analytical and numerical biaxial bending analysis of deepwater riser due to vortex-induced vibration

    , Article Journal of Marine Science and Technology (Japan) ; 2021 ; 09484280 (ISSN) Tabeshpour, M. R ; Komachi, Y ; Sharif University of Technology
    Springer Japan  2021
    Abstract
    Previous studies of analysis and prediction of marine risers responses usually focus on vortex-induced vibration (VIV) of cross-flow (CF) direction rather than in-line (IL). Recent studies show that responses of IL direction tend to dominate in some cases. Responses of long riser due to biaxial bending of IL and CF VIV are investigated. Closed-form formulas are derived for estimating maximum normal stress due to the biaxial moment of CF/IL VIV and relations for estimating biaxial stress using CF values are presented. Analytical results are compared with numerical results of the time domain model and a good correlation is observed. It is shown that for tension and bending-controlled modes of... 

    Interaction of micropolar fluid structure with the porous media in the flow due to a rotating cone

    , Article Alexandria Engineering Journal ; Volume 60, Issue 1 , 2021 , Pages 1249-1257 ; 11100168 (ISSN) Ahmad, S ; Ali, K ; Bashir, H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    A model of heat and mass transfer of two dimensional MHD micropolar fluid over a cone is constructed. Similarity transformation is adopted for the conversion of partial differential equations into ordinary differential equations have been linearized by employing the Newton's linearization technique and then new sets of equations are discretized using the finite difference method. The impact of non-dimensional parameters is further analyzed and the numerical results for profiles of velocity, temperature and concentration are expressed graphically and the results are discussed in detail. For the higher values of Dufour number, temperature field is enhanced graphically but show the opposite... 

    Interaction of micropolar fluid structure with the porous media in the flow due to a rotating cone

    , Article Alexandria Engineering Journal ; Volume 60, Issue 1 , 2021 , Pages 1249-1257 ; 11100168 (ISSN) Ahmad, S ; Ali, K ; Bashir, H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    A model of heat and mass transfer of two dimensional MHD micropolar fluid over a cone is constructed. Similarity transformation is adopted for the conversion of partial differential equations into ordinary differential equations have been linearized by employing the Newton's linearization technique and then new sets of equations are discretized using the finite difference method. The impact of non-dimensional parameters is further analyzed and the numerical results for profiles of velocity, temperature and concentration are expressed graphically and the results are discussed in detail. For the higher values of Dufour number, temperature field is enhanced graphically but show the opposite... 

    On the development of a nonlinear time-domain numerical method for describing vortex-induced vibration and wake interference of two cylinders using experimental results

    , Article Nonlinear Dynamics ; 2021 ; 0924090X (ISSN) Armin, M ; Day, S ; Karimirad, M ; Khorasanchi, M ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    A nonlinear mathematical model is developed in the time domain to simulate the behaviour of two identical flexibly mounted cylinders in tandem while undergoing vortex-induced vibration (VIV). Subsequently, the model is validated and modified against experimental results. Placing an array of bluff bodies in proximity frequently happens in different engineering fields. Chimney stacks, power transmission lines and oil production risers are few engineering structures that may be impacted by VIV. The coinciding of the vibration frequency with the structure natural frequency could have destructive consequences. The main objective of this study is to provide a symplectic and reliable model capable... 

    Dynamics and stability analysis of rotating cylindrical shells in annular fluid medium

    , Article International Journal of Structural Stability and Dynamics ; Volume 20, Issue 8 , 2020 Abdollahi, R ; Firouz Abadi, R. D ; Rahmanian, M ; Sharif University of Technology
    World Scientific  2020
    Abstract
    Stability and dynamics of rotating coaxial cylindrical shells conveying incompressible and inviscid fluid are investigated. The interior shell is assumed to be flexible while the exterior cylinder is rigid. Using Sander's-Koiter theory assumptions and following Hamilton's principle, governing equations of motion are determined in their integral form. Employing the extended Galerkin method of solution, the integral equations of motion are projected to their equivalent system of algebraic equations. Fluid equations are fundamentally based on the linearized inviscid Navier-Stokes equations. Impermeability condition on the fluid and structure interface as well as the zero radial velocity... 

    Effects of salinity, ion type, and aging time on the crude oil-brine interfacial properties under gravity condition

    , Article Journal of Petroleum Science and Engineering ; Volume 195 , December , 2020 Khajepour, H ; Akhlaghi Amiri, H. A ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, the impacts of salinity, ion type, and aging process were investigated on coalescence and spreading of crude oil interfaces (including an oil droplet and an oil film) under gravity, through drop rest time measurement techniques, aided by an image analysis system. Three different salt solutions of NaCl, Na2SO4, and MgCl2 were studied at different ionic strengths, ranged from 1% to 150% of Persian Gulf seawater ionic strength. According to the results, aging the oil droplet in the brine increased the interfacial rigidity. Addition of a gas phase - by thinning the surface oil film - almost doubled both rest time and spreading time values. In the aged mode, the presence of salt in... 

    Nonlinear dynamics of viscoelastic pipes conveying fluid placed within a uniform external cross flow

    , Article Applied Ocean Research ; Volume 94 , 2020 Shahali, P ; Haddadpour, H ; Hosseini Kordkheili, S. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This paper investigates the nonlinear dynamic response of a viscoelastic pipe conveying fluid subjected to a uniform external cross flow based on the Euler-Bernoulli theory. The main objective of this work is to find the proper viscoelastic coefficients to mitigate the dynamic response of a marine riser. A nonlinear oscillator is utilized to simulate the mean drag force and the vortex-induced lift force. Also, the pipe material is assumed to be viscoelastic and consisted of the Kelvin-Voigt type. The extended Hamilton's principle along with the Galerkin discretization are employed to construct the nonlinear model of the coupled fluid-structure system. Moreover, the assumed mode method along... 

    Fluid-structure interaction simulation of blood flow and cerebral aneurysm: effect of partly blocked vessel

    , Article Journal of Vascular Research ; Volume 56, Issue 6 , 2019 , Pages 296-307 ; 10181172 (ISSN) Saeedi, M ; Shamloo, A ; Mohammadi, A ; Sharif University of Technology
    S. Karger AG  2019
    Abstract
    In this study, using fluid-structure interaction (FSI), 3-dimensional blood flow in an aneurysm in the circle of Willis-which is located in the middle cerebral artery (MCA)-has been simulated. The purpose of this study is to evaluate the effect of a partly blocked vessel on an aneurysm. To achieve this purpose, two cases have been investigated using the FSI method: in the first case, an ideal geometry of aneurysm in the MCA has been simulated; in the second case, modeling is performed for an ideal geometry of the aneurysm in the MCA with a partly blocked vessel. All boundary conditions, properties and modeling methods were considered the same for both cases. The only difference between the... 

    In silico study of patient-specific magnetic drug targeting for a coronary LAD atherosclerotic plaque

    , Article International Journal of Pharmaceutics ; Volume 559 , 2019 , Pages 113-129 ; 03785173 (ISSN) Shamloo, A ; Amani, A ; Forouzandehmehr, M ; Ghoytasi, I ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Coronary artery disease is the first cause of death across the world. Targeted delivery of therapeutics through controlled release of micro- and nano-particles remains a very capable approach to develop new strategies in treating restenosis and atherosclerotic plaques. In this research, to produce the arterial geometry, an image-processing was done using CT-scan images of a LAD coronary artery. After implementing the finite element mesh, the Fluid-Structure Interaction (FSI) simulation based on physiological boundary conditions was performed. Next, a Lagrangian description of particles dynamics in a non-Newtonian blood flow considering momentum equation of motion for each particle and the... 

    Sloshing effects on supersonic flutter characteristics of a circular cylindrical shell partially filled with liquid

    , Article International Journal for Numerical Methods in Engineering ; Volume 117, Issue 8 , 2019 , Pages 901-925 ; 00295981 (ISSN) Zarifian, P ; Ovesy, H. R ; Firouz Abadi, R. D ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    This paper aims to revisit the effect of sloshing on the flutter characteristics of a partially liquid-filled cylinder. A computational fluid-structure interaction model within the framework of the finite element method is developed to capture fluid-structure interactions arising from the sloshing of the internal fluid and the flexibility of its containing structure exposed to an external supersonic airflow. The internal liquid sloshing is represented by a more sophisticated model, referred to as the liquid sloshing model, and the shell structure is modeled by Sanders' shell theory. The aerodynamic pressure loading is approximated by the first-order piston theory. The initial geometric... 

    Primary stenosis progression versus secondary stenosis formation in the left coronary bifurcation: a mechanical point of view

    , Article Biocybernetics and Biomedical Engineering ; Volume 39, Issue 1 , 2019 , Pages 188-198 ; 02085216 (ISSN) Jahromi, R ; Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Sp. z o.o  2019
    Abstract
    Biomechanical forces and hemodynamic factors influence the blood flow and the endothelial cells (ECs) morphology. These factors behave differently beyond the coronary artery stenosis. In the present study, unsteady blood flow in the left coronary artery (LCA) and its atherosclerotic bifurcating vessels, left anterior descending (LAD) and left circumflex (LCX) arteries, were numerically simulated to investigate the risk of plaque length development and secondary plaque formation in the post-stenotic areas. Using fluid–structure interaction (FSI) model, compliance of arterial wall and vessel curvature variations due to cardiac motion were considered. The arteries included plaques at the... 

    Primary stenosis progression versus secondary stenosis formation in the left coronary bifurcation: a mechanical point of view

    , Article Biocybernetics and Biomedical Engineering ; Volume 39, Issue 1 , 2019 , Pages 188-198 ; 02085216 (ISSN) Jahromi, R ; Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Sp. z o.o  2019
    Abstract
    Biomechanical forces and hemodynamic factors influence the blood flow and the endothelial cells (ECs) morphology. These factors behave differently beyond the coronary artery stenosis. In the present study, unsteady blood flow in the left coronary artery (LCA) and its atherosclerotic bifurcating vessels, left anterior descending (LAD) and left circumflex (LCX) arteries, were numerically simulated to investigate the risk of plaque length development and secondary plaque formation in the post-stenotic areas. Using fluid–structure interaction (FSI) model, compliance of arterial wall and vessel curvature variations due to cardiac motion were considered. The arteries included plaques at the...