Loading...
Search for: firoozabadi--b
0.016 seconds
Total 142 records

    Vorticity-based coarse grid generation for upscaling two-phase displacements in porous media

    , Article Journal of Petroleum Science and Engineering ; Volume 59, Issue 3-4 , 2007 , Pages 271-288 ; 09204105 (ISSN) Ashjari, M. A ; Firoozabadi, B ; Mahani, H ; Khoozan, D ; Sharif University of Technology
    2007
    Abstract
    Coarse grid generation from finely gridded geological model is a main step in reservoir simulation. Coarse grid generation algorithms aim at optimizing size, number and location of the grid blocks by identifying the important geological and flow features which control flow in porous media. By optimizing coarse grid structure we can improve accuracy of the coarse scale simulation results to reproduce fine grid behavior. A number of techniques have been proposed in the literature. We present a novel coarse grid generation procedure based on vorticity preservation between fine and coarse grids. In the procedure, the coarse grid mesh tries to capture variations in both permeability and fluid... 

    Using vorticity as an indicator for the generation of optimal coarse grid distribution

    , Article Transport in Porous Media ; Volume 75, Issue 2 , 2008 , Pages 167-201 ; 01693913 (ISSN) Ashjari, M. A ; Firoozabadi, B ; Mahani, H ; Sharif University of Technology
    2008
    Abstract
    An improved vorticity-based gridding technique is presented and applied to create optimal non-uniform Cartesian coarse grid for numerical simulation of two-phase flow. The optimal coarse grid distribution (OCGD) is obtained in a manner to capture variations in both permeability and fluid velocity of the fine grid using a single physical quantity called "vorticity". Only single-phase flow simulation on the fine grid is required to extract the vorticity. Based on the fine-scale vorticity information, several coarse grid models are generated for a given fine grid model. Then the vorticity map preservation error is used to predict how well each coarse grid model reproduces the fine-scale... 

    URANS simulation of 2D continuous and discontinuous gravity currents

    , Article Journal of Applied Sciences ; Volume 8, Issue 16 , 2008 , Pages 2801-2813 ; 18125654 (ISSN) Eghbalzadeh, A ; Namin, M. M ; Salehi, A. A ; Firoozabadi, B ; Javan, M ; Sharif University of Technology
    2008
    Abstract
    This study seeks to explore the ability of unsteady Reynolds-averaged Navier-Stokes (URANS) simulation approach for resolving two-dimensional (2D) gravity currents on fine computational meshes. A 2D URANS equations closed by a buoyancy-modified k-ε turbulence model are integrated in time with a second-order fractional step approach coupled with a direct implicit method and discretized in space on a staggered mesh using a second-order accurate finite volume approach incorporating a high resolution semi-Lagrangian technique for the convective terms. A series of 2D simulations are carried out for gravity currents from both discontinuous and continuous sources. Comparisons with experimental... 

    Two-phase acto-cytosolic fluid flow in a moving keratocyte: a 2d continuum model

    , Article Bulletin of Mathematical Biology ; Volume 77, Issue 9 , September , 2015 , Pages 1813-1832 ; 00928240 (ISSN) Nikmaneshi, M. R ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    The F-actin network and cytosol in the lamellipodia of crawling cells flow in a centripetal pattern and spout-like form, respectively. We have numerically studied this two-phase flow in the realistic geometry of a moving keratocyte. Cytosol has been treated as a low viscosity Newtonian fluid flowing through the high viscosity porous medium of F-actin network. Other involved phenomena including myosin activity, adhesion friction, and interphase interaction are also discussed to provide an overall view of this problem. Adopting a two-phase coupled model by myosin concentration, we have found new accurate perspectives of acto-cytosolic flow and pressure fields, myosin distribution, as well as... 

    Turbulent flow in converging nozzles, part one: Boundary layer solution

    , Article Applied Mathematics and Mechanics (English Edition) ; Volume 32, Issue 5 , 2011 , Pages 645-662 ; 02534827 (ISSN) Maddahian, R ; Farhanieh, B ; Firoozabadi, B ; Sharif University of Technology
    2011
    Abstract
    The boundary layer integral method is used to investigate the development of the turbulent swirling flow at the entrance region of a conical nozzle. The governing equations in the spherical coordinate system are simplified with the boundary layer assumptions and integrated through the boundary layer. The resulting sets of differential equations are then solved by the fourth-order Adams predictor-corrector method. The free vortex and uniform velocity profiles are applied for the tangential and axial velocities at the inlet region, respectively. Due to the lack of experimental data for swirling flows in converging nozzles, the developed model is validated against the numerical simulations. The... 

    Three-dimensional simulation of urine concentrating mechanism in a functional unit of rat outer medulla. I. Model structure and base case results

    , Article Mathematical Biosciences ; Vol. 258 , 2014 , pp. 44-56 ; ISSN: 00255564 Sohrabi, S ; Saidi, M. S ; Saadatmand, M ; Banazadeh, M. H ; Firoozabadi, B ; Sharif University of Technology
    Abstract
    The urine formation and excretion system have long been of interest for mathematicians and physiologists to elucidate the obscurities within the process happens in renal tissue. In this study, a novel three-dimensional approach is utilized for modeling the urine concentrating mechanism in rat renal outer medulla which is essentially focused on demonstrating the significance of tubule's architecture revealed in anatomic studies and physiological literature. Since nephrons and vasculatures work interdependently through a highly structured arrangement in outer medulla which is dominated by vascular bundles, a detailed functional unit is proposed based on this specific configuration.... 

    Three-dimensional simulation of turbulent flow in 3-sub channels of a VVER-1000 reactor

    , Article Scientia Iranica ; Volume 17, Issue 2 B , 2010 , Pages 83-92 ; 10263098 (ISSN) Ganjiani, H ; Firoozabadi, B ; Sharif University of Technology
    2010
    Abstract
    In this study, the fluid dynamics and convective heat transfer for turbulent flows through a 3-sub channel of a rod bundle, which is representative of those used in VVER-1000, are examined. The rod bundle is constructed from parallel rods in a hexagonal array. The rods are on constant pitch by spacer grids spaced axially along the rod bundle. The geometry details of the bundle and heat flux from the fuel rod are similar to that of the Iranian nuclear reactor under construction. A numerical study using Computational Fluid Dynamics (CFD) was carried out to estimate the flow field, pressure loss and heat transfer coefficients in spacer grids and rod bundles. Turbulence has been modeled using... 

    Three-dimensional modeling of density current in confined and unconfined channels

    , Article 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006, Chicago, IL, 5 November 2006 through 10 November 2006 ; 2006 ; 08888116 (ISSN); 0791837904 (ISBN); 9780791837900 (ISBN) Aram, E ; Firoozabadi, B ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2006
    Abstract
    Dense underflows are continuous currents which move down-slope due to the fact that their density is heavier than that ambient water. In this work, 2-D and 3-D density current in a channel were investigated by a set of experimental studies and the data were used to simulate the density current. The velocity components were measured using Acoustic Doppler Velocimetry (ADV). The height of density current (current's depth) was also measured. In this study, the density current with a uniform velocity and concentration enters the channel via a sluice gate into a lighter ambient fluid and moves forward down-slope. A low-Reynolds number turbulent model (Launder and Sharma, 1974) has been applied to... 

    The propagation of turbulent density currents on sloping beds

    , Article Scientia Iranica ; Volume 8, Issue 2 , 2001 , Pages 130-137 ; 10263098 (ISSN) Farhanieh, B ; Firoozabadi, B ; Rad, M ; Sharif University of Technology
    Sharif University of Technology  2001
    Abstract
    In this paper, the motion of density currents, released on sloping beds and under still bodies of clear water, is numerically investigated. The turbulent flow equations of mass, momentum and diffusion are solved simultaneously in the fixed Cartesian directions, on a non-staggered grid using finite-volume scheme. The velocity-pressure coupling is handled by SIMPLEC method. A modified k - ε model is used to account for the influence of Reynolds stresses in the turbulent momentum equations. Density currents with uniform velocity and concentration enter the channel via a sluice gate into a lighter ambient fluid and move forward down the slope. Comparison of the computed velocity, concentration... 

    Theoretical modeling of actin-retrograde-flow passing clusters of confined T cell receptors

    , Article Mathematical Biosciences ; Volume 283 , 2017 , Pages 1-6 ; 00255564 (ISSN) Ghasemi V., A ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Elsevier Inc  2017
    Abstract
    Through the activation process of T cells, actin filaments move from the cell periphery toward the cell center. The moving filaments engage with T cell receptors and thus contribute to transportation of the signaling molecules. To study the connection between the moving actin filaments and T cell receptors, an experiment available in the literature has measured filaments flow velocity passing over a region of confined clusters of receptors. It shows that flow velocity decreases in the proximity of the receptors, and then regains its normal value after traversing the region, suggesting a dissipative friction-like connection. In this work, we develop a minimal theoretical model to re-examine... 

    Theoretical and experimental study on the motion and shape of viscoelastic falling drops through Newtonian media

    , Article Rheologica Acta ; Volume 55, Issue 11-12 , 2016 , Pages 935-955 ; 00354511 (ISSN) Vamerzani, B. Z ; Norouzi, M ; Firoozabadi, B ; Sharif University of Technology
    Springer Verlag 
    Abstract
    In this paper, creeping motion of a viscoelastic drop falling through a Newtonian fluid is investigated experimentally and analytically. A polymeric solution of 0.08 % xanthan gum in 80:20 glycerol/water and silicon oil is implemented as the viscoelastic drop and the bulk viscous fluids, respectively. The shape and motion of falling drops are visualized using a high speed camera. The perturbation technique is employed for both interior and exterior flows, and Deborah and capillary numbers are considered as perturbation parameters up to second order. The product of Deborah and capillary numbers is also used as a perturbation parameter to apply the boundary condition on the deformation on the... 

    Theoretical and experimental investigation of density jump on an inclined surface

    , Article Scientia Iranica ; Vol. 21, Issue. 5 , 2014 , pp. 1655-1665 ; ISSN :1026-3098 Najafpour, N ; Sarnie, M ; Firoozabadi, B ; Afshin, H ; Sharif University of Technology
    Abstract
    The density jump on an inclined surface is analyzed using an integral method by applying mass and momentum conservation equations. The jump occurs in a two-layered fluid flow in which the upper layer is stagnant and very deep. A relation is derived, which gives the conjugate depth ratio as a function of inlet densimetric Froude number, inlet concentration ratio, bed slope and entrainment. A set of experiments are performed to verify the relation. The theory and the measurements are in good agreement. The analysis reveals that increasing the surface inclination results in a decrease in the conjugate depth ratio. This analysis also shows that the densimetric Froude number just after the jump... 

    The importance of fluid-structure interaction simulation for determining the mechanical stimuli of endothelial cells and atheroprone regions in a coronary bifurcation

    , Article Scientia Iranica ; Volume 23, Issue 1 , 2016 , Pages 228-237 ; 10263098 (ISSN) Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    The function and morphology of Endothelial Cells (ECs) play a key role in atherosclerosis. The mechanical stimuli of ECs, such as Wall Shear Stress (WSS) and arterial wall strain, greatly inuence the function and morphology of these cells. The present article deals with computations of these stimuli for a 3D model of a healthy coronary artery bifurcation. The focus of the study is to propose an accurate method for computations of WSS and strains. Two approaches are considered: Coupled simultaneous simulation of arterial wall and blood flow, called fluid-Structure Interaction (FSI) simulation, and decoupled, which simulates each domain (fluid and solid domain) separately. The study... 

    The 20–22 February 2016 mineral dust event in Tehran, Iran: numerical modeling, remote sensing, and In Situ measurements

    , Article Journal of Geophysical Research: Atmospheres ; Volume 123, Issue 10 , 27 May , 2018 , Pages 5038-5058 ; 2169897X (ISSN) Najafpour, N ; Afshin, H ; Firoozabadi, B ; Sharif University of Technology
    Blackwell Publishing Ltd  2018
    Abstract
    Wind erosion raises mineral dusts from dry and semidry lands and produces dust storms. Such dust masses have created numerous health and economic problems for the residents of southern, southwestern, and central parts of Iran. The main sources, movement, spread, and settlement of dust masses can be determined by solving the governing equations for aerosol transmission. Such information will be certainly useful in managerial decision-making. In this study, the dust event in Tehran on 20–22 February 2016 was studied using numerical model, Moderate Resolution Imaging Spectroradiometer satellite data, and data of ground-based stations. A comparison between the numerical results and in situ... 

    Spheroids-on-a-chip: recent advances and design considerations in microfluidic platforms for spheroid formation and culture

    , Article Sensors and Actuators, B: Chemical ; Volume 263 , 15 June , 2018 , Pages 151-176 ; 09254005 (ISSN) Moshksayan, K ; Kashaninejad, N ; Ebrahimi Warkiani, M ; Lock, J. G ; Moghadas, H ; Firoozabadi, B ; Saidi, M. S ; Nguyen, N. T ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    A cell spheroid is a three-dimensional (3D) aggregation of cells. Synthetic, in-vitro spheroids provide similar metabolism, proliferation, and species concentration gradients to those found in-vivo. For instance, cancer cell spheroids have been demonstrated to mimic in-vivo tumor microenvironments, and are thus suitable for in-vitro drug screening. The first part of this paper discusses the latest microfluidic designs for spheroid formation and culture, comparing their strategies and efficacy. The most recent microfluidic techniques for spheroid formation utilize emulsion, microwells, U-shaped microstructures, or digital microfluidics. The engineering aspects underpinning spheroid formation... 

    Simulation of low density lipoprotein (LDL) permeation into multilayer coronary arterial wall: interactive effects of wall shear stress and fluid-structure interaction in hypertension

    , Article Journal of Biomechanics ; 2017 ; 00219290 (ISSN) Roustaei, M ; Nikmaneshi, M. R ; Firoozabadi, B ; Sharif University of Technology
    Abstract
    Due to increased atherosclerosis-caused mortality, identification of its genesis and development is of great importance. Although, key factors of the origin of the disease is still unknown, it is widely believed that cholesterol particle penetration and accumulation in arterial wall is mainly responsible for further wall thickening and decreased rate of blood flow during a gradual progression. To date, various effective components are recognized whose simultaneous consideration would lead to a more accurate approximation of Low Density Lipoprotein (LDL) distribution within the wall. In this research, a multilayer Fluid-Structure Interaction (FSI) model is studied to simulate the penetration... 

    Simulation of low density lipoprotein (LDL) permeation into multilayer coronary arterial wall: interactive effects of wall shear stress and fluid-structure interaction in hypertension

    , Article Journal of Biomechanics ; Volume 67 , 2018 , Pages 114-122 ; 00219290 (ISSN) Roustaei, M ; Nikmaneshi, M. R ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Due to increased atherosclerosis-caused mortality, identification of its genesis and development is of great importance. Although, key factors of the origin of the disease is still unknown, it is widely believed that cholesterol particle penetration and accumulation in arterial wall is mainly responsible for further wall thickening and decreased rate of blood flow during a gradual progression. To date, various effective components are recognized whose simultaneous consideration would lead to a more accurate approximation of Low Density Lipoprotein (LDL) distribution within the wall. In this research, a multilayer Fluid-Structure Interaction (FSI) model is studied to simulate the penetration... 

    Simulation of a density current turbulent flow employing different RANS models- a comparative study

    , Article 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 7 January 2008 through 10 January 2008 ; 2008 ; 9781563479373 (ISBN) Mehdizadeh, A ; Firoozabadi, B ; Sherif, A ; Sharif University of Technology
    2008
    Abstract
    The accuracy of Reynolds averaged Navier-Stokes (RANS) turbulence models to predict the behavior of two-dimensional (2-D) density current has been examined. In this work, a steady density current is simulated by the κ -ε , κ -ε RNG, two-layer κ -ε and modified v 2̄ - f models. All models are compared with available experimental data. Density current with uniform velocity and concentration enters a channel via a sluice gate into a lighter ambient fluid and moves forward down-slope. The eddy-viscosity concept cannot accurately simulate this flow because of two stress production structures in it. Results show that all isotropic models have a weak outcome for this current, but with improving the... 

    Simulation of a density current turbulent flow employing different RANS models: a comparison study

    , Article Scientia Iranica ; Volume 16, Issue 1 , 2009 , Pages 53-63 ; 10263098 (ISSN) Mehdizadeh, A ; Firoozabadi, B ; Sharif University of Technology
    2009
    Abstract
    The accuracy of Reynolds Averaged Navier-Stokes (RANS) turbulence models to predict the behavior of 2-D density currents has been examined. In this work, a steady density current is simulated by the k - ε, k - ε RNG, two-layer k - ε and modified v̄2 - f model, all of which are compared with the experimental data. Density currents, with a uniform velocity and concentration, enter a channel via a sluice gate into a lighter ambient fluid and move forward down-slope. The eddy-viscosity concept cannot accurately simulate this flow because of two stress production structures found within it. Results show that all isotropic models have a weak outcome on this current, but by improving the ability of... 

    Selection and simulation of a proper microfluidic for hepatocyte culture

    , Article 2015 22nd Iranian Conference on Biomedical Engineering, ICBME 2015, 25 November 2015 through 28 November 2015 ; 2015 , Pages 65-69 ; 9781467393515 (ISBN) Nejadnasrollah, F ; Firoozabadi, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    The advent of microfluidics as suitable environments for culturing cells is associated with some challenges as shear stresses applied on the cells. Moreover, among all factors needed for cell viability, feeding hepatocytes with adequate oxygen is of great importance due to their high demand for oxygen compared the other cell types. In this paper three kinds of geometries has been studied in order that shear stresses would be in allowed range and provision of hepatocytes with sufficient oxygen concentrations has been ensured as well. In addition to supplying hepatocytes with oxygen, the range of its concentration has been adjusted in physiologic value so that it would be practical for further...