Loading...
Search for: firoozabadi--b
0.012 seconds
Total 142 records

    Fsi simulation of a healthy coronary bifurcation for studying the mechanical stimuli of endothelial cells under different physiological conditions

    , Article Journal of Mechanics in Medicine and Biology ; Volume 15, Issue 5 , October , 2015 ; 02195194 (ISSN) Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2015
    Abstract
    Atherosclerosis is a world-spread and well-known disease. This disease strongly relates to the endothelial cells (ECs) function. Normally, the endothelial cells align in the flow direction in the atheroprotected sites; however, in the case of atheroprone sites these cells orient randomly. The mechanical stimuli such as wall shear stress and strains could determine the morphology and function of the endothelial cells. In the present study, we numerically simulated the left main coronary artery (LCA) and its branches to left anterior descending (LAD) and left circumflex coronary (LCX) artery using fluid-structure interaction (FSI) modeling. The results were presented as longitudinal and... 

    A priori error estimation of upscaled coarse grids for water-flooding process

    , Article Canadian Journal of Chemical Engineering ; Volume 94, Issue 8 , 2016 , Pages 1612-1626 ; 00084034 (ISSN) Khoozan, D ; Firoozabadi, B ; Sharif University of Technology
    Wiley-Liss Inc 
    Abstract
    Advanced reservoir characterization methods can yield geological models at a very fine resolution, containing 1011–1018 cells, while the common reservoir simulators can only handle much lower numbers of cells due to computer hardware limitations. The process of coarsening a fine-scale model to a simulation model is known as upscaling. Predicting the accuracy of simulation results over an upscaled grid with respect to the fine grid is highly important, as it can yield the optimum upscaling process. In this paper, permeability-based and velocity-based a priori error estimation techniques are proposed by introducing image processing-based comparison methods in the context of upscaling. The... 

    High precision invasive FFR, low-cost invasive iFR, or non-invasive CFR?: optimum assessment of coronary artery stenosis based on the patient-specific computational models

    , Article International Journal for Numerical Methods in Biomedical Engineering ; Volume 36, Issue 10 , 2020 Tajeddini, F ; Nikmaneshi, M. R ; Firoozabadi, B ; Pakravan, H. A ; Ahmadi Tafti, S. H ; Afshin, H ; Sharif University of Technology
    Wiley-Blackwell  2020
    Abstract
    The objective of this paper is to apply computational fluid dynamic (CFD) as a complementary tool for clinical tests to not only predict the present and future status of left coronary artery stenosis but also to evaluate some clinical hypotheses. In order to assess the present status of the coronary artery stenosis severity, and thereby selecting the most appropriate type of treatment for each patient, fractional flow reserve (FFR), instantaneous wave free-ratio (iFR), and coronary flow reserve (CFR) are calculated. To examine FFR, iFR, and CFR results, the effect of geometric features of stenoses, including diameter reduction (%), lesion length (LL), and minimum lumen diameter (MLD), is... 

    Experimental study of obstacle effect on sediment transport of turbidity currents

    , Article Journal of Hydraulic Research ; Volume 56, Issue 5 , 2018 , Pages 618-629 ; 00221686 (ISSN) Abhari, M. N ; Iranshahi, M ; Ghodsian, M ; Firoozabadi, B ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    The effects of an obstacle on the suspended load transport rate of supercritical turbidity currents were investigated experimentally. A Vectrino velocity meter was used to measure velocity and sediment concentration profiles. The effects of important parameters including inlet discharge, mean inlet sediment concentration and obstacle height on suspended load transport rate were investigated. In the upstream velocity profiles, the obstacle generates the reflected and the interface regions in addition to the wall and the jet regions. The average amount of suspended load transport rate downstream of the obstacle decreases to about 92%. This confirms the depositional behaviour of turbidity... 

    Effect of an obstacle on the depositional behaviour of turbidity currents

    , Article Journal of Hydraulic Research ; 2018 , Pages 1-15 ; 00221686 (ISSN) Farizan, A ; Yaghoubi, S ; Firoozabadi, B ; Afshin, H ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    Turbidity currents are responsible for much of the sedimentation in reservoirs. In order to control these flows, various methods such as placing an obstacle in their path have been proposed. In this study, the effect of inlet sediment concentration and obstacle height on the behaviour of turbidity currents is investigated experimentally. For this purpose, some experiments were carried out with different inlet concentrations and various obstacle heights. Velocity and concentration profiles were measured using an acoustic Doppler velocimeter. To examine the depositional behaviour of turbidity current, suspended sediment flux was calculated using velocity and concentration profiles of the... 

    Effect of an obstacle on the depositional behaviour of turbidity currents

    , Article Journal of Hydraulic Research ; Volume 57, Issue 1 , 2019 , Pages 75-89 ; 00221686 (ISSN) Farizan, A ; Yaghoubi, S ; Firoozabadi, B ; Afshin, H ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    Turbidity currents are responsible for much of the sedimentation in reservoirs. In order to control these flows, various methods such as placing an obstacle in their path have been proposed. In this study, the effect of inlet sediment concentration and obstacle height on the behaviour of turbidity currents is investigated experimentally. For this purpose, some experiments were carried out with different inlet concentrations and various obstacle heights. Velocity and concentration profiles were measured using an acoustic Doppler velocimeter. To examine the depositional behaviour of turbidity current, suspended sediment flux was calculated using velocity and concentration profiles of the... 

    Homotopy perturbation method for unsteady motion of a single bubble in a highly viscous liquid

    , Article Chemical Engineering Communications ; 2020 Shahsavari, M ; Oshaghi, M. R ; Afshin, H ; Firoozabadi, B ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    In this study, the dynamics of the accelerated and steady-state motion of a single bubble in a quiescent highly viscous Newtonian liquid was investigated theoretically and experimentally. The presented mathematical model was based on Newton's second law of motion and a balance of buoyancy, drag, history, and added-mass forces. Due to the presence of non-linear terms in the equation of motion, homotopy perturbation method was used as a powerful analytical method to calculate the velocity analytically. To obtain accurate results in the experiments, a high-speed camera was used to record the bubble motion from the moment of detachment to the time at which the terminal velocity is reached.... 

    Homotopy perturbation method for unsteady motion of a single bubble in a highly viscous liquid

    , Article Chemical Engineering Communications ; Volume 208, Issue 8 , 2021 , Pages 1143-1159 ; 00986445 (ISSN) Shahsavari, M ; Oshaghi, M. R ; Afshin, H ; Firoozabadi, B ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    In this study, the dynamics of the accelerated and steady-state motion of a single bubble in a quiescent highly viscous Newtonian liquid was investigated theoretically and experimentally. The presented mathematical model was based on Newton's second law of motion and a balance of buoyancy, drag, history, and added-mass forces. Due to the presence of non-linear terms in the equation of motion, homotopy perturbation method was used as a powerful analytical method to calculate the velocity analytically. To obtain accurate results in the experiments, a high-speed camera was used to record the bubble motion from the moment of detachment to the time at which the terminal velocity is reached.... 

    Electrokinetic and aspect ratio effects on secondary flow of viscoelastic fluids in rectangular microchannels

    , Article Microfluidics and Nanofluidics ; Volume 20, Issue 8 , 2016 ; 16134982 (ISSN) Reshadi, M ; Saidi, M. H ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    The secondary flow of PTT fluids in rectangular cross-sectional plane of microchannels under combined effects of electroosmotic and pressure driving forces is the subject of the present study. Employing second-order central finite difference method in a very refined grid network, we investigate the effect of electrokinetic and geometric parameters on the pattern, strength and the average of the secondary flow. In this regard, we try to illustrate the deformations of recirculating vortices due to change in the dimensionless Debye–Hückel and zeta potential parameters as well as channel aspect ratio. We demonstrate that, in the presence of thick electric double layers, significant alteration... 

    Pulsatile blood flow in total cavopulmonary connection: a comparison between Y-shaped and T-shaped geometry

    , Article Medical and Biological Engineering and Computing ; Volume 55, Issue 2 , 2017 , Pages 213-224 ; 01400118 (ISSN) Rajabzadeh Oghaz, H ; Firoozabadi, B ; Saidi, M. S ; Monjezi, M ; Navabi Shirazi, M. A ; Malakan Rad, E ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    Single-ventricle anomaly is a hereditary heart disease that is characterized by anatomical malformations. The main consequence of this malformation is desaturated blood flow, which without proper treatment increases the risk of death. The classical treatment is based on a three-stage palliative procedure which should begin from the first few days of patient’s life. The final stage is known as Fontan procedure, in which inferior vena cava is directly connected to pulmonary arteries without going through the ventricle. This connection is called total cavopulmonary connection (TCPC). After surgery, the single ventricle supplies adequate and saturated systemic blood flow to the body; however,... 

    Experimental study on the interfacial instability of particle-laden stratified shear flows

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 40, Issue 4 , April , 2018 ; 16785878 (ISSN) Khavasi, E ; Firoozabadi, B ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Turbidity currents are one of the more frequently observed types of stratified flows. In these currents, the density difference is created as a result of suspended particles. The interfacial instability of turbidity current is studied experimentally in the present research. Both Kelvin–Helmholtz and (asymmetric) Holmboe instabilities are observed during the experiments; the first one was downstream, and the second one was upstream of the obstacle. Kelvin–Helmholtz instability is observed by approximately zero (phase) speed with respect to the mean flow. With the aim of measuring spectral distribution of velocity fluctuations, the effects of some parameters are studied on interfacial waves;... 

    Linear spatial stability analysis of particle-laden stratified shear layers

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 41, Issue 6 , 2019 ; 16785878 (ISSN) Khavasi, E ; Firoozabadi, B ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Hydrodynamic instabilities at the interface of stratified shear layers could occur in various modes. These instabilities have an important role in the mixing process. In this work, the linear stability analysis in spatial framework is used to study the stability characteristics of a particle-laden stratified two-layer flow. The effect of parameters such as velocity-to-density thickness ratio, bed slope, viscosity as well as particle size on the stability is considered. A simple iterative method applying the pseudospectral collocation method that employed Chebyshev polynomials is used to solve two coupled eigenvalue equations. Based on the results, the flow becomes stable for Richardson... 

    Theoretical and experimental study on the motion and shape of viscoelastic falling drops through Newtonian media

    , Article Rheologica Acta ; Volume 55, Issue 11-12 , 2016 , Pages 935-955 ; 00354511 (ISSN) Vamerzani, B. Z ; Norouzi, M ; Firoozabadi, B ; Sharif University of Technology
    Springer Verlag 
    Abstract
    In this paper, creeping motion of a viscoelastic drop falling through a Newtonian fluid is investigated experimentally and analytically. A polymeric solution of 0.08 % xanthan gum in 80:20 glycerol/water and silicon oil is implemented as the viscoelastic drop and the bulk viscous fluids, respectively. The shape and motion of falling drops are visualized using a high speed camera. The perturbation technique is employed for both interior and exterior flows, and Deborah and capillary numbers are considered as perturbation parameters up to second order. The product of Deborah and capillary numbers is also used as a perturbation parameter to apply the boundary condition on the deformation on the... 

    A mechanical model for morphological response of endothelial cells under combined wall shear stress and cyclic stretch loadings

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 15, Issue 5 , 2016 , Pages 1229-1243 ; 16177959 (ISSN) Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    Springer Verlag 
    Abstract
    The shape and morphology of endothelial cells (ECs) lining the blood vessels are a good indicator for atheroprone and atheroprotected sites. ECs of blood vessels experience both wall shear stress (WSS) and cyclic stretch (CS). These mechanical stimuli influence the shape and morphology of ECs. A few models have been proposed for predicting the morphology of ECs under WSS or CS. In the present study, a mathematical cell population model is developed to simulate the morphology of ECs under combined WSS and CS conditions. The model considers the cytoskeletal filaments, cell–cell interactions, and cell–extracellular matrix interactions. In addition, the reorientation and polymerization of... 

    Investigation of cancer response to chemotherapy: a hybrid multi-scale mathematical and computational model of the tumor microenvironment

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 21, Issue 4 , 2022 , Pages 1233-1249 ; 16177959 (ISSN) Nikmaneshi, M. R ; Firoozabadi, B ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Tumor microenvironment (TME) is a multi-scale biological environment that can control tumor dynamics with many biomechanical and biochemical factors. Investigating the physiology of TME with a heterogeneous structure and abnormal functions not only can achieve a deeper understanding of tumor behavior but also can help develop more efficient anti-cancer strategies. In this work, we develop a hybrid multi-scale mathematical model of TME to simulate the progression of a three-dimensional tumor and elucidate its response to different chemotherapy approaches. The chemotherapy approaches include multiple low dose (MLD) of anti-cancer drug, maximum tolerated dose (MTD) of anti-cancer drug,... 

    Two-phase acto-cytosolic fluid flow in a moving keratocyte: a 2d continuum model

    , Article Bulletin of Mathematical Biology ; Volume 77, Issue 9 , September , 2015 , Pages 1813-1832 ; 00928240 (ISSN) Nikmaneshi, M. R ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    The F-actin network and cytosol in the lamellipodia of crawling cells flow in a centripetal pattern and spout-like form, respectively. We have numerically studied this two-phase flow in the realistic geometry of a moving keratocyte. Cytosol has been treated as a low viscosity Newtonian fluid flowing through the high viscosity porous medium of F-actin network. Other involved phenomena including myosin activity, adhesion friction, and interphase interaction are also discussed to provide an overall view of this problem. Adopting a two-phase coupled model by myosin concentration, we have found new accurate perspectives of acto-cytosolic flow and pressure fields, myosin distribution, as well as... 

    Investigation of bubble formation and its detachment in shear-thinning liquids at low capillary and Bond numbers

    , Article Theoretical and Computational Fluid Dynamics ; Volume 33, Issue 5 , 2019 , Pages 463-480 ; 09354964 (ISSN) Oshaghi, M. R ; Afshin, H ; Firoozabadi, B ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    In the present paper, the formation of an air bubble in a shear-thinning non-Newtonian fluid was investigated numerically. For modeling, an algebraic volume of fluid (VOF) solver of OpenFOAM ® was improved by applying a Laplacian filter and was evaluated using the experimental results from the literature. The enhanced solver could compute the surface tension force more accurately, and it was important especially at low capillary and Bond numbers due to the dominance of surface tension force relative to the other forces. The adiabatic bubble growth was simulated in an axisymmetric domain for Bo = 0.05 , 0.1 , 0.5 and Ca = 10 - 1, 10 - 2, 10 - 3, 10 - 4, and the bubble detachment time and... 

    Endothelial cells morphology in response to combined wss and biaxial cs: introduction of effective strain ratio

    , Article Cellular and Molecular Bioengineering ; Volume 13, Issue 6 , 2020 , Pages 647-657 Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    Springer  2020
    Abstract
    Introduction: Endothelial cells (ECs) morphology strongly depends on the imposed mechanical stimuli. These mechanical stimuli include wall shear stress (WSS) and biaxial cyclic stretches (CS). Under combined loading, the effect of CS is not as simple as pure CS. The present study investigates the morphological response of ECs to the realistic mechanical stimuli. Methods: The cell population is theoretically studied using our previous validated model. The mechanical stimuli on ECs are described using four parameters; WSS magnitude (0 to 2.0 Pa), WSS angle (− 50° to 50°), and biaxial CS in two perpendicular directions (0 to 10%). The morphology of ECs is reported using four parameters; average... 

    A hepatocellular carcinoma–bone metastasis-on-a-chip model for studying thymoquinone-loaded anticancer nanoparticles

    , Article Bio-Design and Manufacturing ; Volume 3, Issue 3 , 2020 , Pages 189-202 Sharifi, F ; Yesil Celiktas, O ; Kazan, A ; Maharjan, S ; Saghazadeh, S ; Firoozbakhsh, K ; Firoozabadi, B ; Zhang, Y. S ; Sharif University of Technology
    Springer  2020
    Abstract
    We report the development of a metastasis-on-a-chip platform to model and track hepatocellular carcinoma (HCC)–bone metastasis and to analyze the inhibitory effect of an herb-based compound, thymoquinone (TQ), in hindering the migration of liver cancer cells into the bone compartment. The bioreactor consisted of two chambers, one accommodating encapsulated HepG2 cells and one bone-mimetic niche containing hydroxyapatite (HAp). Above these chambers, a microporous membrane was placed to resemble the vascular barrier, where medium was circulated over the membrane. It was observed that the liver cancer cells proliferated inside the tumor microtissue and disseminated from the HCC chamber to the... 

    Reservoir flow simulation using combined vorticity-based gridding and multi-scale upscaling

    , Article Society of Petroleum Engineers - SPE Asia Pacific Oil and Gas Conference and Exhibition 2007 ""Resources, Professionalism, Technology: Time to Deliver"", Jakarta, 30 October 2007 through 1 November 2007 ; Volume 2 , 2007 , Pages 927-946 ; 9781604238594 (ISBN) Mahani, H ; Ashjari, M. A ; Firoozabadi, B ; Sharif University of Technology
    Society of Petroleum Engineers (SPE)  2007
    Abstract
    A novel technique for upscaling of detailed geological reservoir descriptions is presented. The technique aims at reducing both numerical dispersion and homogenization error, generated due to incorporating a coarse computational grid and assigning effective permeability to coarse grid blocks respectively. In particular we consider implicit-pressure explicit-saturation (IMPES) scheme where homogenization error impacts the accuracy of the coarse grid solution of the pressure equation. To reduce the homogenization error, we employ the new vorticity-based gridding that generates a non-uniform coarse grid with high resolution at high vorticity zones. In addition, to control numerical dispersion,...